首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Acetyl-6-O-phosphono-muramoyl-l-alanyl-d-isoglutamine methyl ester and a variety of its 1-α-O-acyl derivatives were synthesized from benzyl 2-acetamido-2-deoxy-3-O-[d-1-(methoxycar-bonyl)ethyl]-β-d-glucopyranoside. Their immunoadjuvant activity in guinea-pigs was examined.  相似文献   

2.
To investigate the substrate specificity of α-l-rhamnosidase from Aspergillus niger, the following seven substrates were synthesized: methyl 3-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (1), methyl 3-O-α-l-rhamnopyranosyl-α-l-xylopyranoside (2), methyl 3-0-α-l-rhamnopyranosyl-α-l-rhamnopyranoside (3), methyl 4-0-α-l-rhamnopyranosyl-α-d-galactopyranoside (4), methyl 4-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (5), methyl 4-0-α-l-rhamnopyra-nosyl-α-d-xylopyranoside (6), and 6-0-β-l-rhamnopyranosyl-d-mannopyranose (7). Compounds 1~6 were well-hydrolyzed by the crude enzyme, but 7 was unaffected.  相似文献   

3.
To investigate the substrate specificity of β-l-rhamnosidase, the following β-l-rhamnopyranosides were synthesized: 1-(β-l-rhamnopyranosyl)-dl-glycerol (1), methyl β-l-rhamnopyranoside (2), methyl 2-O-(β-l-rhamnopyranosyl)-β-d-glucopyranoside (3) and methyl 2-O-β(β-l-rhamnopyranosyl)-α-l-arabinopyranoside (4). The synthesis of 3 was performed using l-quinovose with neighboring group participation, which lead stereoselectively to the β-l-quinovoside. The 2-OH of the l-quinovo-unit was selectively deblocked, oxidized to the keto group, and then stereoselectively reduced, whereby 3 was produced.  相似文献   

4.
During an examination of components contributing to the bitter taste of asparagus bottom cut (Asparagus officinalis L.), two new furostanol saponins were isolated from roots extractives. Their chemical structures were established as 5β-furostane-3β,22,26 triol-3-O-β-d-glucopyranosyl (1→2)-β-d-glucopyranoside 26-O-β-d-glucopyranoside and 5β-furostane-3β,22,26 triol-3-O-β-d-glucopyranosyl (1→2) [β-d-xylopyranoxyl (1→4)]-β-d-glucopyranoside 26-O-β-d-glucopyranoside respectively.  相似文献   

5.
transglucosylation by a β-d-glucosidase from cycad seeds. These azoxyglycosides, named neocycasin H, I, and J, were identified as O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(l→3)-O-β-d-glucopyranoside of methylazoxymethanol (MAM), O-β-d-glucopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, and O-β-d-glucopyranosyl-(1→3)-[O-β-d-xylopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, respectively. On the basis of their structures, the mechanism of the formation of these neocycasins is also discussed.  相似文献   

6.
Partial acid hydrolysis of Saccharomyces cerevisiae mannan gave 2-O-α-d-Manp-d-Man (1), 3-O-α-d-Manp-d-Man (2), 6-O-α-d-Manp-d-Man (3), O-α-d Manp-(1→2)O-α-d-Manp-(1→2)-d-Man (4), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-d-Man (5), O-α-d Manp-(1→6)-6-O-α-d-Manp-(1→6)-d-Man (6), O-α-d Manp-(1→2)-O-α-d-Manp-(1→2)-6-O-α-d-Manp-(1→6)-d-Man (7), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-O-α-d-Manp-(1→6)-d-Man (8), and O-α-d-Manp-(1→6)-O-[α-d-Manp-(1→2)]-O-α-d-Manp-(1→6)-d-Man (9).  相似文献   

7.
The acceptor specificity of amylomaltase from Escherichia coli IFO 3806 was investigated using various sugars and sugar alcohols. d-Mannose, d-glucosamine, N-acetyl- d-glucosamine, d-xylose, d- allose, isomaltose, and cellobiose were efficient acceptors in the transglycosylation reaction of this enzyme. It was shown by chemical and enzymic methods that this enzyme could transfer glycosyl residues only to the C4-hydroxyl groups of d-mannose, iY-acetyl- d-glucosamine, d-allose, and d-xylose, producing oligosaccharides terminated by 4–0-α-d-glucopyranosyl-d-mannose, 4–0-α-d-glucopyranosyl-yV-acetyl-d-glucosamine, 4-O-α-d-glucopyranosyl-d-allose, and 4–0-α-d-gluco- pyranosyl-d-xylose at the reducing ends, respectively.  相似文献   

8.
A variety of 1-O-acyl and 1,6-di-O-acyl derivatives of N-acetylmuramoyl-l-alanyl-G-isoglutamine methyl esters were synthesized from N-[2-O-(2-acetamido-2,3-dideoxy-4,6-O-iso- propylidene-d-glucopyranose-3-yl)-d-lactoyl]-l-alanyl-d-isoglutamine methyl ester, and their biological activities were examined in guinea-pigs and mice.  相似文献   

9.
The nature of the active site of Chaetomium trilaterale β-xylosidase catalyzing the hydrolysis of β-d-glucopyranoside and β-d-xylopyranoside was investigated by kinetic methods. On experiments with mixed substrates, such as phenyl β-d-xylopyranoside and phenyl β-d-glucopyranoside, the kinetic features agreed very closely with those features theoretically predicted for a single active site of the same enzyme catalyzing the hydrolysis of these two kinds of substrates.

Both the β-glucosidase and β-xylosidase activities were strongly inhibited by glucono-1,5-lactone and nojirimycin (5-amino-5-deoxy-d-glucopyranose). β-Xylosidase activity was inhibited non-competitively by the two inhibitors, but β-glucosidase activity was competitive. Methyl β-d-xylopyranoside, methyl β-d-glucopyranoside, 1-thiophenyl β-d-xylopyranoside, and 1-thiophenyl β-d-glucopyranoside poorly inhibited both activities. Methyl β-d-xylopyranoside inhibited the β-xylosidase activity competitively but the β-glucosidase activity was non-competitive, whereas methyl β-d-glucopyranoside inhibited the β-xylosidase activity non-competitively but the β-glucosidase activity was competitive. 1-Thiophenyl β-d-xylopyranoside and 1-thiophenyl β-d-glucopyranoside behaved as competitive inhibitors.

From these results, it was concluded that the β-xylosidase and β-glucosidase activities reside in one catalytic site, and this suggests that there might be two kinetically distinct binding sites in the active center of the same enzyme.  相似文献   

10.
The substrate specificity of α-d-xylosidase from Bacillus sp. No. 693–1 was further investigated. The enzyme hydrolyzed α-1,2-, α-1,3-, and α-1,4-xylobioses. It also acted on some heterooligosaccharides such as O-α-d-xylopyranosyl-(1→6)-d-glucopyranose, O-α-d-xylopyranosyl-(1→6)-O-β-d-glucopyranosyl-(1→4)-d-glucopyranose, O-α- d-xylopyranosyl-(1→6)-O-d-glucopyranosyl-(1→4)-O-[α-d-xylopyranosyl-(1→6)]-d-glucopyranose, and O-α-d-xylopyranosyl-(1→3)-l-arabinopyranose. The enzyme was unable to hydrolyze tamarinde polysaccharides although it could hydrolyze low molecular weight substrates with similar linkages.  相似文献   

11.
A variety of the lipophilic derivatives at C-1 and C-6 in N-[2-O-(2-acetamido-2,3-dideoxy-1-thio-β-d-glucopyranose-B-yl)-d-lactoy]-l-alanyl-(N1-fatty acyl)-d-isoglutamine methyl esters were synthesized from 2N-acetyl-1-S-acetyl-4,6-O-isopropylidene-1-thiomuramoyl-l-alanyl-d-isogluta-mine methyl ester. Their immunoadjuvant activity in guinea-pigs, and the protective effect in mice infected with Escherichia coli (E-77156) were examined.  相似文献   

12.
Partial acid hydrolysis of asterosaponin A, a steroidal saponin, afforded two new disaccharides in addition to O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose which has been characterized in the preceding paper. The formers were demonstrated as O-(6-deoxy-α-d-galactopyranosyl)-(1→4)-6-deoxy-d-glucose and O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-6-deoxy-d-galactose, respectively.

Accordingly, the structure of carbohydrate moiety being composed of two moles each of 6-deoxy-d-galactose and 6-deoxy-d-glucose, was established as O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose, which is attached to the steroidal aglycone through an O-acetal glycosidic linkage.  相似文献   

13.
New synthetic methods for the preparation of 6-deoxy-1,2-O-isopropylidene-α-d-xylo-hexofuranos-5-ulse (VIa) were described.

Methyl 2,3,4-tri-O-benzoyl-6-deoxy-α-d-arabino-hex-5-enopyranoside (IIIa) was synthesized starting from methyl α-d-altroside (IIa). This enose derivative (IIIa) was hydrolyzed to methyl 6-deoxy-α-d-arabino-hex-5-enopyranoside (IIIb), and then converted with acid into 6-deoxy-d-arabino-hexofuranos-5-ulose (I), the sugar component of antibiotic hygromycin A.  相似文献   

14.
A cell suspension culture of a Vitis hybrid converted quercetin to six glucosides. Their structures were identified as quercetin 3-O-β-d-glucopyranoside, quercetin 3,4′-di-O-β-d-glucopyranoside, quercetin 3,7-di-O-β-d-glucopyranoside, isorhamnetin 3-O-β-d-glucopyranoside, isorhamnetin 3,4′-di-O-β-d-glucopyranoside, and isorhamnetin 3,7-di-O-β-d-glucopyranoside by UV, FD-MS, 1H-NMR, 13C-NMR spectroscopy and TLC analysis.

The course of conversion was also investigated and it was shown that quercetin 3-O-glucoside reached the maximum yield of 31% in 24 hr and then gradually disappeared accompanied by the production of quercetin 3,4′- and 3,7-di-O-glucosides. Although the same rise and fall relationship was observed between isorhamnetin 3-O-glucoside and isorhamnetin 3,4′- or 3,7-di-O-glucoside, their conversion ratios were much lower than those of quercetin glucosides.  相似文献   

15.
The transglucosidation reaction of brewer’s yeast α-glucosidase was examined under the co-existence of l-sorbose and phenyl-α-glucoside. As the transglucosidation products, three kinds of new disaccharide were chromatographically isolated. It was presumed that these disaccharides consisting of d-glucose and l-sorbose were 1-O-α-d-glucopyranosyl-l-sorbose ([α]D+89.0), 3-O-α-d-glucopyranosyl-l-sorbose ([α]D+69.1) and 4-O-α-d-glucopyranosyl-l-sorbose ([α]D+81.0). The principal product formed in the enzyme reaction was 1-O-α-d-glucopyranosyl-l-sorbose.  相似文献   

16.
During the investigations on riboflavin glycoside formation by Aspergillus, Mucor, Penicillium and Rhizopus, a remarkable production of 5′-d-riboflavin-α-d-glucopyranoside was observed in several strains belonging to the genus Mucor when grown on a, medium containing maltose and riboflavin. Several conditions on 5′-d-riboflavin-α-d-glucopyranoside formation were also investigated with washed mycellium of M. javanicus. Maltosyl compounds such as maltose, dextrin, amylose and soluble starch were the effective glucosyl donor, whereas glucose, fructose, sucrose, lactose and dextran were inactive.  相似文献   

17.
In order to clarify the substrate specificity of the α-L-mannosidase activity of naringinase (Sigma), the following disaccharides and phenol glycosides were freshly prepared: methyl 2-O-(α-L-mannopyranosyl)­β-D-glucoside (1), methyl 3-O-(α-L-mannopyranosyl)-α-D-glucoside (2), methyl 4-O-(α-L-mannopyranosyl)-α-D-glucoside (3), methyl 5-O-(α-L-mannopyranosyl)-β-D-glucoside (4), methyl 6-O-(α-L-mannopyranosyl)-α-D­glucoside (5), 6-O-(α-L-mannpyranosyl)-D-galactose (6), p-nitrophenyl α-L-mannoside (7), and 4-methyl umbelliferone α-L-mannoside (8).These compounds, except for 3 and 5, were hydrolyzed with naringinase.  相似文献   

18.
Periodate oxidation of some sugar alcohols, methyl glycosides and a synthetic glucan in an amount of 5 ~ 20 mg was performed in ca. 0.2 ~ 0.4 ml of D2O involving NaIO4 (1.5 ~ 2.0 moles excess) in a NMR sample tube, and the reaction products were examined in the course of oxidation by NMR spectroscopy.

In addition to proton signals of formyl and formaldehyde (in acetal), proton signals at hemiacetal carbons were identified in the periodate oxidation. Splitting and change in O-methyl and N-acetate-methyl signals indicated presence of more than one structures for each of the reaction products in the periodate oxidations of methyl α-d-glucopyranoside and methyl N-acetyl-α-d-glucosaminide. A condensation product was detected in the periodate oxidation of glycolaldehyde, d,l-glyceraldehyde and d-galactitol. A synthetic glucan was found to have a structure of 1,6-linkage in a DP = 15?17.  相似文献   

19.
To investigate the substrate specificity and regio-selectivity of coumarin glycosyltransferases in transgenic hairy roots of Polygonum multiflorum, esculetin (1) and eight hydroxycoumarins (29) were employed as substrates. Nine corresponding glycosides (1018) involving four new compounds, 6-chloro-4-methylcoumarin 7-O-β-D-glucopyranoside (15), 6-chloro-4-phenylcoumarin 7-O-β-D-glucopyranoside (16), 8-hydroxy-4-methylcoumarin 7-O-β-D-glucopyranoside (17), and 8-allyl-4-methylcoumarin 7-O-β-D-glucopyranoside (18), were biosynthesized by the hairy roots.  相似文献   

20.
Benzyl 2, 3, 6-tri-O-acetyl-4-O-(2,3-di-O-acetyl-4,6-di-O-methylsulfonyl-β-d-glucopyranosyl)-β-d-glucopyranoside (VI) was prepared from α-cellobiose octaacetate. Displacement of the sulfonyl esters of VI with acyloxy-groups in N, N-dimethyl formamide in the presence of sodium benzoate gave 4-O-β-d-galactopyranosyl-d-glucopyranose derivative (lactose derivative). Elimination of blocking groups of the derivative yielded lactose hydrate (IX), though the overall yield of lactose from cellobiose octaacetate was less than 2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号