首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Three plant growth regulators, paclobutrazol, ancymidol, and decylimidazole, which are putative inhibitors of gibberellin (GA) biosynthesis, were studied to determine their effect on abscisic acid (ABA) biosynthesis in the fungus Cercospora rosicola. All three compounds inhibited ABA biosynthesis, and paclobutrazol was the most effective, inhibiting ABA 33% at 0.1 micromolar concentrations. In studies using (E,E,)-[1-14C] farnesyl pyrophosphate, it was shown that ancymidol blocked biosynthesis prior to farnesyl pyrophosphate (FPP), whereas paclobutrazol and decylimidazole acted after FPP. The three inhibitors did not prevent 4′-oxidation of (2Z,4E)-α-ionylideneacetic acid. C. rosiciola metabolized ancymidol by demethylation to α-cyclopropyl-α-(p-hydroxyphenyl)-5-pyrimidine methyl alcohol. Paclobutrazol was not metabolized by the fungus. Information that these plant growth regulators inhibit ABA as well as GA biosynthesis should prove useful in determining the full range of action of these compounds.  相似文献   

2.
The fungus Cercospora rosicola produces abscisic acid (ABA) as a secondary metabolite. We developed a convenient system using this fungus to determine the effects of compounds on the biosynthesis of ABA. Inasmuch as ABA and the gibberellins (GAs) both arise via the isoprenoid pathway, it was of interest to determine if inhibitors of GA biosynthesis affect ABA biosynthesis. All five putative inhibitors of GA biosynthesis tested inhibited ABA biosynthesis. Several plant growth retardants with poorly understood actions in plants were also tested; of these, six inhibited ABA biosynthesis to varying degrees and two had no effect. Effects of plant growth retardants on various branches of the isoprenoid biosynthetic pathway may help to explain some of the diverse and unexpected results reported for these compounds. Knowledge that certain inhibitors of GA biosynthesis also have the ability to inhibit ABA biosynthesis in C. rosicola indicates the need for further studies in plants on the mode of action of these compounds.  相似文献   

3.
A Chiralcel OJ column was used to determine the absolute configuration of naturally occurring α-ionylideneacetic acid from Cercospora rosicola and γ-ionylideneacetic acid from C. cruenta as (R) enantiomers in accordance with their biosynthetic product, (S)-ABA. Both enantiomers of [1, 2-13C2]-α and γ-ionylideneacetic acids were prepared and fed to C. rosicola and C. cruenta. Six combinations of feeding experiments comparatively and unequivocally demonstrated stereoselectivity in the biosynthetic conversions, including stepwise hydroxylation at C-1′ and 4′. Enzymatic isomerization from the γ to α-intermediate was suggested not to be involved in ABA biosynthesis in C. rosicola.  相似文献   

4.
Abscisic acid production by Cercospora rosicola Passerini in liquid shake culture was measured with different amino acids in combination and singly as nitrogen sources and with different amounts of thiamine in the media. Production of abscisic acid was highest with aspartic acid-glutamic acid and aspartic acid-glutamic acid-serine mixtures as nitrogen sources. Single amino acids that supported the highest production of abscisic acid were asparagine and monosodium glutamate. Thiamine was important for abscisic acid production. Leucine inhibited abscisic acid production. C. rosicola produced abscisic acid in the dark, but production more than doubled in the presence of light.  相似文献   

5.
6.
The rate of synthesis of abscisic acid (ABA) by the phytopathogenicfungus Cercospora cruenta was found to be increased 2.6-foldby water stress (0.5 M mannitol, 48 h). To characterize theoxidative steps in the synthesis of ABA by C. cruenta, a mutantstrain deficient in the synthesis of ABA was isolated aftertransformation with a foreign gene. This strain was furthercharacterized by an immunoassay using a monoclonal antibodyspecific for 1',4'-dihydroxy--ionylidene-acetate. One transformantthat seemed likly to be deficient in the synthesis of ABA wasisolated. Integration of the foreign gene into the chromosomalDNA of the transformant was confirmed by Southern hybridization. 3Present address: Nitto Chemical Industries Co. Ltd.Chiyodaku,Tokyo, 100 Japan  相似文献   

7.
A new differentiation screening system employing a human neuroblastoma cell line. NB-1, was used to isolate staurosporine as an inducer obtained from the culture broth of Streptomyces actuosus. Staurosporine at a concentration of 20 nm induced elongation of neurites and cell enlargement one hour after treatment of NB-1. In addition, the agent had a cytotoxic effect against NB-1 at a concentration of more than 0.21 μm.  相似文献   

8.
Factors Affecting the Biosynthesis of Abscisic Acid   总被引:8,自引:1,他引:7  
Incorporation of labelled mevalonate into abscisic acid (ABA)has been demonstrated in the cotyledons of mature avocado seeds,embryos and endosperms of developing wheat seeds, and avocadostems. The increase in ABA concentration on wilting parallelsthe increased incorporation of [2–14C)mevalonate intoABA in avocado leaves and stems, suggesting that the increasein ABA content occurs by synthesis rather than by release froma stored precursor. Incorporation of [2–14C]mevalonateby avocado mesocarp segments is unaffected by an 18 per centwater loss. The ABA content of roots was hardly affected bya 30 per cent water loss, indicating that the wilt-activatedmechanism is not fully operative in these tissues. Submerged Ceratophyllum plants and submerged parts of Callitricheshoots show a twofold increase in ABA content on wilting whereasthe aerial rosettes of the latter plant show a sixfold increase.This suggests that the occurrence of the wilt-induced mechanismis affected by previous growth conditions as well as by themorphology of the tissue.  相似文献   

9.
高等植物脱落酸生物合成的酶调控   总被引:1,自引:0,他引:1  
陶均  李玲 《植物学通报》2002,19(6):675-683
高等植物ABA的生物合成开始于细胞质内的甲瓦龙酸 (MVA)或位于叶绿体内的丙酮酸_硫胺素焦磷酸 (TPP) ,经一系列反应最后在质体或胞质中形成的。除胁迫或植物发育中生理变化引起的诱导外 ,ABA的合成还受到一系列酶的调控 ,其中 ,玉米黄质环氧化酶 (ZE) ,9_顺环氧类胡萝卜素双加氧酶(NCED)和醛氧化酶 (AO)可能起到重要的调节作用。本文介绍近年来ABA生物合成酶调控的研究进展。  相似文献   

10.
陶均  李玲 《植物学报》2002,19(6):675-683
高等植物ABA 的生物合成开始于细胞质内的甲瓦龙酸(MVA)或位于叶绿体内的丙酮酸_硫胺素焦磷酸(TPP),经一系列反应最后在质体或胞质中形成的。除胁迫或植物发育中生理变化引起的诱导外,ABA的合成还受到一系列酶的调控,其中,玉米黄质环氧化酶(ZE),9_顺环氧类胡萝卜素双加氧酶(NCED)和醛氧化酶(AO)可能起到重要的调节作用。本文介绍近年来ABA生物合成酶调控的研究进展。  相似文献   

11.
A simple synthetic liquid medium containing a single amino acid, glucose, salts, trace metals, and thiamine was developed for cultivation of Cercospora rosicola Passerini. Thiamine was shown to be important to growth. Culture of C. rosicola Passerini in a chemically defined medium makes possible studies of (+)-abscisic acid biosynthesis and regulation.  相似文献   

12.
Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in 18O2. It was found that in stressed leaves three atoms of 18O from 18O2 are incorporated into the ABA molecule, and that the amount of 18O incorporated increases with time. One 18O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in 18O2 shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more 18O into the tertiary hydroxyl group at C-1′ after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, 18O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied 14C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional 18O incorporated during 8′-hydroxylation of ABA to phaseic acid.  相似文献   

13.
高等植物脱落酸的生物合成及其调控   总被引:8,自引:2,他引:8  
介绍了近年来高等植物体内ABA的合成部位,ABA生物合成缺陷型突变体,ABA生物合成途径及其调控的最新研究进展。  相似文献   

14.
15.
2H-Labelled α-ionylidene ethanol and α-ionylidene acetic acid are converted in high yield to 1′-deoxy-abscisic acid (1′-deoxy-ABA) and absc  相似文献   

16.
Abscisic Acid Biosynthesis in Isolated Embryos of Zea mays L   总被引:4,自引:4,他引:0       下载免费PDF全文
Gage DA  Fong F  Zeevaart JA 《Plant physiology》1989,89(4):1039-1041
Previous labeling experiments with 18O2 have supported the hypothesis that stress-induced abscisic acid (ABA) is synthesized through an indirect pathway involving an oxygenated carotenoid (xanthophyll) as a precursor. To investigate ABA formation under nonstress conditions, an 18O2 labeling experiment was conducted with isolated embryos from in vitro grown maize (Zea mays L.) kernels. Of the ABA produced during the incubation in 18O2, three-fourths contained a single 18O atom located in the carboxyl group. Approximately one-fourth of the ABA synthesized during the experiment contained two 18O atoms. These results suggest that ABA synthesized in maize embryos under nonstress conditions also proceeds via the indirect pathway, requiring a xanthophyll precursor. It was also found that the newly synthesized ABA was preferentially released into the surrounding medium.  相似文献   

17.
Abscisic Acid and C10 Dicarboxylic Acids in Wilty Tomato Mutants   总被引:1,自引:0,他引:1  
Linforth, R. S. T., Taylor, I. B. and Hedden, P. 1987. Abscisicacid and C10 dicarboxylic acids in wilty tomato mutants.—J.exp. Bot. 38: 1734–1740. The concentration of C10 dicarboxylic acids in wilty tomatomutants was investigated. Three of the genotypes studied (flacca,sitiens and the double mutant homozygote flacca/sitiens) werefound to have higher concentrations of 2,7-dimethyl-2,4-octadienedioicacid (ODA) than the isogenic normal form. In contrast, the othergenotypes (notabilisand the double mutant homozygotes notabilis/flaccaand notabilis/sitiens) were found to have lower concentrationsof ODA than the isogenic normal form. The concentration of ODAin flacca plants was increased by water stress and reduced byexogenously applied abscisic acid (ABA). A second structurallyrelated compound, 2,7-dimethyl-4-octenedioic acid (OEA) wasalso quantified, but it showed no clear genotype-related pattern. The concentration of ABA in the wilty tomato mutants was alsoinvestigated. As expected in the light of previously publishedresults, it was reduced in the single mutants relative to theisogenic control plants. In the double mutant flacca/sitiensABA levels were similar to those of the single mutant sitiens.However, in the two double mutants notabilis/flacca and notabilis/sitiensABA was substantially lower than those in any other genotypeinvestigated. Key words: Abscisic acid, 2,7-dimethyl-2,4-octadienedioic acid, 2,7-dimethyl-4-octenedioc acid, tomato, wilty mutants  相似文献   

18.
The effects of podolactone-type plant-growth inhibitors on thebiosynthesis of chlorophyll and its precursor -aminolevulinicacid (ALA) in etiolated barley have been studied and comparedwith those of abscisic acid (ABA). Podolactone E was one ofthe most potent inhibitors and it significantly inhibited chlorophyllformation at 0.1 µM after exposing barley leaves to lightfor 12 h. A lag phase of 4 to 6 hours in the inhibition of synthesisof ALA and chlorophyll by podolactone-type inhibitors occurredin light, but disappeared after preincubation in darkness for15 hours. ABA was the most potent inhibitor of synthesis ofALA but not of chlorophyll. We postulate that the effect ofthe inhibitors is to suppress de novo protein synthesis, possiblyat the translational level. This view is supported by the effectof the compound on -amylase production induced in barley embryosby GA3. 1Biology Department, Utah State University, Logan, Utah; sabbatical1981 at University of Melbourne. 2Biology Department, Humboldt State University; Visiting Professor,Utah State University, August 1982, Summer 1983. (Received November 1, 1983; Accepted March 26, 1984)  相似文献   

19.
渗透胁迫诱导的植物细胞中脱落酸的合成及其调控机制   总被引:9,自引:1,他引:9  
植物细胞受到渗透胁迫后,细胞内脱落酸(ABA)迅速积累,文中就渗透胁迫诱导细胞中ABA的合成以及与其有关的信号感觉,转换,转导,相关基因的表达等过程及其调控机制作了概述。  相似文献   

20.
Recently there have been breakthroughs on a number of fronts in abscisic acid (ABA) biology research that have advanced the field significantly, including discovery of genes involved in ABA metabolism, along with progress in understanding of ABA signaling (Finkelstein and others 2002; Kushiro and others 2004; Lim and others 2005; Saito and others 2004). At the same time, the chemistry of ABA has advanced. New analytical methods have been developed for profiling ABA and catabolites (Ross and others 2004; Zaharia and others 2005). Novel bioactive catabolites have been discovered from feeding studies with deuterated ABA and catabolites (Zaharia and others 2004; Zhou and others 2004). This review covers recent advances and prospects in natural products chemistry, analysis of ABA catabolism, and applications of ABA analogs for biochemical studies and horticultural uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号