首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Digestion of non-glucosylated and cytosine-substituted T4 phage (T4dC) DNA with SalI restriction endonuclease showed that the DNA had nine SalI-sensitive sites. There were eight SalI sites in DNA from a strain which had a deletion in the rII-denB-ndd region. The comparison of two digestion patterns indicated that one of the SalI-sensitive sites was present in the deleted region and that the SalI-F fragment (8.4x106 daltons) was located adjacent to the SalI-C or SalI-D fragment (15.5x106 daltons) on the T4 chromosome. The DNA gave no detectable cleavage product when digested with BamHI endonuclease alone, while, when digested successively with BamHI and SalI, the DNA yielded two new digestion products in place of one fragment formed by SalI alone. The BamHI-sensitive site was in the SalI-A fragment (25.2x106 daltons). The usefulness of this information for making cleavage maps of T4 phage chromosome is discussed.  相似文献   

2.
Physical mapping of bacteriophage T4   总被引:8,自引:0,他引:8  
Summary The 134 positions of the cleavage sites of the restriction endonucleases XbaI, HaeII and EcoRI were determined for a cytosine-containing DNA of bacteriophage T4. This physical map was aligned with the genetic map. The T4 early regions were further identified by hybridization of RNA synthesized in vitro to the restriction fragments and two promoter regions were localized by filter binding tests and R-loop analysis.  相似文献   

3.
H Takahashi  H Saito 《Plasmid》1982,8(1):29-35
Transduction of plasmid pBR322 by cytosine-substituted T4 phages has been studied. Three T4 phage mutants which substitute cytosine for all of hydroxymethylcytosine residues in the DNA, were shown to transduce pBR322 at frequencies of 2 × 10?2 to 4 × 10?3 transductants per singly infected cell. Also, three T4 phage strains which partially substitute cytosine for hydroxymethylcytosine, transduced pBR322 at frequencies of 2 × 10?3 to 2 × 10?4. The transduction frequencies of pBR322 we attained are at least 10-fold higher than those reported by G. G. Wilson, K. Young, and G. J. Edlin (1979, Nature (London)280, 80–82). We found that multiplicity of infection in preparation of the transducing phage is the most important factor affecting the frequency of pBR322 transduction. When a lysate made at a multiplicity of infection ranging from 0.5 to 0.05 was used as the donor phage, transduction frequency of pBR322 was 10- to 40-fold higher than that of high-m.o.i. lysate. The transduction frequency was not affected by either restriction systems or amber suppressors of the recipient cells. However, no pBR322-containing transductant was obtained when either recA or polA mutants were used as the recipients. DNA from T4dC phage containing pBR322-transducing particles was analyzed on agarose gel electrophoresis after cleavage with restriction endonucleases. It was suggested that the pBR322 DNA in the T4dC phage particles exists as head-to-tail concatemers.  相似文献   

4.
The natural role of the conserved bacterial anticodon nuclease (ACNase) RloC is not known, but traits that set it apart from the homologous phage T4‐excluding ACNase PrrC could provide relevant clues. PrrC is silenced by a genetically linked DNA restriction‐modification (RM) protein and turned on by a phage‐encoded DNA restriction inhibitor. In contrast, RloC is rarely linked to an RM protein, and its ACNase is regulated by an internal switch responsive to double‐stranded DNA breaks. Moreover, PrrC nicks the tRNA substrate, whereas RloC excises the wobble nucleotide. These distinctions suggested that (i) T4 and related phage that degrade their host DNA will activate RloC and (ii) the tRNA species consequently disrupted will not be restored by phage tRNA repair enzymes that counteract PrrC. Consistent with these predictions we show that Acinetobacter baylyi RloC expressed in Escherichia coli is activated by wild‐type phage T4 but not by a mutant impaired in host DNA degradation. Moreover, host and T4 tRNA species disrupted by the activated ACNase were not restored by T4's tRNA repair system. Nonetheless, T4's plating efficiency was inefficiently impaired by AbaRloC, presumably due to a decoy function of the phage encoded tRNA target, the absence of which exacerbated the restriction.  相似文献   

5.
Summary The ocr + gene function (gp 0.3) of bacteriophages T3 and T7 not only counteracts type I (EcoB, EcoK) but also type III restriction endonucleases (EcoP1). Despite the presence of recognition sites, phage DNA as well as simultaneously introduced plasmid DNA are protected by ocr + expression against both the endonucleolytic and the methylating activities of the EcoP1 enzyme. Nevertheless, the EcoP1 protein causes the exclusion of T3 and T7 in P1-lysogenic cells, apparently by exerting a repressor-like effect on phage gene expression. T3 which induces an S-adenosylmethionine hydrolase is less susceptible to the repressor effect of the SAM-stimulated EcoP1 enzyme. The abundance of EcoP1 recognition sites in the T7 genome is explained by their near identity with the T7 DNA primase recognition site.Abbreviations d.p.m. decompositions per min - EcoB, EcoK, EcoP1, EcoP15, EcoRII, EcoR124, HinfIII restriction endonucleases coded by Escherichia coli strains B or K, E. coli plasmids P1, P15, RII or R124, and Haemophilus influenzae Rf 232, resp. - e.o.p. efficiency of plating - gp gene product (in the sense of protein) - m.o.i. multiplicity of infection (phage/cell) - ocr + gene function which overcomes classical restriction - p.f.u. plaque-forming units - SAM S-adenosylmethionine - sam + gene function with S-adenosylmethionine-cleaving enzyme (SAMase) activity - UV ultraviolet light Dedicated to Professor Konstantin Spies on the occasion of his sixtieth birthday  相似文献   

6.
Summary T4 dC-DNA was digested with the restriction endonucleases BglII, SalI and XhoI. Overlaps in the three sets of fragments allowed the mapping of all restriction sites relative to each other along the T4 genome.  相似文献   

7.
Properties of a mutant bacteriophage T2 DNA [N:(6)-adenine] methyltransferase (T2 Dam MTase) have been investigated for its potential utilization in RecA-assisted restriction endonuclease (RARE) cleavage. Steady-state kinetic analyses with oligonucleotide duplexes revealed that, compared to wild-type T4 Dam, both wild-type T2 Dam and mutant T2 Dam P126S had a 1.5-fold higher k(cat) in methylating canonical GATC sites. Additionally, T2 Dam P126S showed increased efficiencies in methylation of non-canonical GAY sites relative to the wild-type enzymes. In agreement with these steady-state kinetic data, when bacteriophage lambda DNA was used as a substrate, maximal protection from restriction nuclease cleavage in vitro was achieved on the sequences GATC, GATN and GACY, while protection of GACR sequences was less efficient. Collectively, our data suggest that T2 Dam P126S can modify 28 recognition sequences. The feasibility of using the mutant enzyme in RARE cleavage with BCL:I and ECO:RV endonucleases has been shown on phage lambda DNA and with BCL:I and DPN:II endonucleases on yeast chromosomal DNA embedded in agarose.  相似文献   

8.
Summary A fragment of Escherichia coli bacteriophage T4D DNA, containing 6.1 Kbp which included the six genes (genes 25, 26, 51, 27, 28 and 29) coding for the tail baseplate central plug has been partially characterized. This DNA fragment was obtained originally by Wilson et al. (1977) by the action of the restriction enzyme EcoRI on a modified form of T4 DNA and was inserted in the pBR322 plasmid and then incorporated into an E. coli K12 strain called RRI. This plasmid containing the phage DNA fragment has now been reisolated and screened for cleavage sites for various restriction endonucleases. Restriction enzymes Bgl 11 and Xbal each attacked one restriction site and the enzyme Hpa 1 attacked two restriction sites on this fragment. The combined digestion of the hybrid plasmid containing the T4 EcoRI DNA fragment conjugated to the pBR322 plasmid with one of these enzymes plus Bam H1 restriction enzyme resulted in the localization of the restriction site for Bgl 11, Xba 1 and Hpa 1. Escherichia coli strain B cells were transformed with this hybrid plasmid and found to have some unexpected properties. E. coli B cells, which are normally restrictive for T4 amber mutants and for T4 temperature sensitive mutants (at 44°) after transformation, were permissive for 25am, 26am and 26Ts, 51am, and 51Ts, 27Ts, and 28Ts T4 mutants. Extracts from the transformed E. coli cells were found in complementation experiments to contain the gene 29 product, as well as the gene 26 product, the gene 51 product, and the gene 27 product. The complementation experiments and the permissiveness of the transformed E. coli B cells to the various conditional lethal mutants clearly showed that the six T4 genes were producing all six gene products in these transformed cells. However, these cells were not permissive for T4 amber mutants in genes 27, 28, and 29. The transformed E. coli B cells, as compared to untransformed cells, were found to have altered outer cell walls which made them highly labile to osmotic shock and to an increased rate of killing by wild type T4 and all T4 amber mutants except for T4 am29. The change in cell walls of the transformed cells has been found to be due to the T4 baseplate genes on the hybrid plasmid, since E. coli B transformed by the pBR322 plasmid alone does not show the increase in osmotic sensitivity.  相似文献   

9.
Summary A cytosine-substitution type mutant of bacteriophage T4 (T4dC phage) has been shown to mediate the transfer of plasmid pBR322. The transduction frequency was around 10-2 per singly infected cell at low multiplicity of infection. The transductants contained either a monomer or multimers of pBR322. The transducing capacity of T4dC phage was resistant to methylmethanesulfonate treatment. The results of Southern blotting experiments have indicated that the pBR322 DNA exists as head-to-tail concatemers in the transducing particles. The mechanism of transfer of pBR322 mediated by T4dC phages is discussed  相似文献   

10.
A survey of restriction endonucleases having different cleavage specificities has identified 10 that do not cut wild-type bacteriophage T7 DNA, 11 that cut at six or fewer sites, four that cut at 18 to 45 sites, and 12 that cut at more than 50 sites. All the cleavage sites for the 13 enzymes that cut at 26 or fewer sites have been mapped. Cleavage sites for each of the 10 enzymes that do not cut T7 DNA would be expected to occur an average of 9 to 10 times in a random nucleotide sequence the length of T7 DNA. A possible explanation for the lack of any cleavage sites for these enzymes might be that T7 encounters enzymes having these specificities in natural hosts, and that the sites have been eliminated from T7 DNA by natural selection. Five restriction endonucleases were found to cut within the terminal repetition of T7 DNA; one of these, KpnI, cuts at only three additional sites in the T7 DNA molecule. The length of the terminal repetition was estimated by two independent means to be approximately 155 to 160 base-pairs.  相似文献   

11.
Cytosine-containing DNA of bacteriophage T4 was digested with three restriction endonucleases: endo R · EcoRI, endo R · HindIII and endo R · PstI, and each digestion ligated with a cloning vector to generate three independent collections of T4 DNA-containing clones. The T4 clones were screened for their T4 genetic content by recombinational analysis using amber mutants of T4. Complementation of T4 amber mutant growth and labeling of proteins in vivo provided evidence of expression of specific (g30, g39, g44 and g46) cloned T4 genes.  相似文献   

12.
Endonuclease (Endo) IV encoded by denB of bacteriophage T4 is an enzyme that cleaves single-stranded (ss) DNA in a dC-specific manner. Previously we have demonstrated that a dTdCdA is most preferable for Endo IV when an oligonucleotide substrate having a single dC residue is used. Here we demonstrate that Endo IV cleaves ssDNAs exclusively at the 5′-proximal dC where a sequence comprises dC residues both at the 5′ proximal and 3′ proximal positions (a dCs tract-dependent cleavage). The dCs tract-dependent cleavage is efficient and occurs when a dCs tract has at least 6 bases. Some dCs tracts larger than 6 bases behave as that of 6 bases (an extended dCs tract), while some others do not. One decameric dCs tract was shown to be cleavable in a dCs tract-dependent manner, but that with 13 dCs was not. The dCs tract-dependent cleavage is enhanced by the presence of a third dC residue at least for a 6 or 7 dCs tract. In contrast to the dCs tract-dependent cleavage, a dCs tract-independent one is generally inefficient and if two modes are possible for a substrate DNA, a dCs tract-dependent mode prevails. A model for the dCs tract-dependent cleavage is proposed.  相似文献   

13.
Reciprocal recombination between T4 DNA cloned in plasmid pBR322 and homologous sequences in bacteriophage T4 genomes leads to integration of complete plasmid molecules into phage genomes. Indirect evidence of this integration comes from two kinds of experiments. Packaging of pBR322 DNA into mature phage particles can be detected by a DNA--DNA hybridization assay only when a T4 restriction fragment is cloned in the plasmid. The density of the pBR322 DNA synthesized after phage infection is also consistent with integration of plasmid vector DNA into vegetative phage genomes. Direct evidence of plasmid integration into phage genomes in the region of DNA homology comes from genetic and biochemical analysis of cytosine-containing DNA isolated from mature phage particles. Agarose gel electrophoresis of restriction endonuclease-digested DNA, followed by Southern blot analysis with nick-translated probes, shows that entire plasmid molecules become integrated into phage genomes in the region of T4 DNA homology. In addition, this analysis shows that genomes containing multiple copies of complete plasmid molecules are also formed. Among phage particles containing at least one integrated copy, the average number of integrated plasmid molecules is almost ten. A cloning experiment done with restricted DNA confirms these conclusions and illustrates a method for walking along the T4 genome.  相似文献   

14.
A restriction map of the T4 transfer RNA gene cluster   总被引:4,自引:0,他引:4  
  相似文献   

15.
The DNA of bacteriophage T5 has been treated with restriction endonucleases EcoRi, HindIII, BamI, SmaI, PstI, SalI, KpnI and the electrophoretic pattern obtained in agarose gel has been analyzed in order to localize the specific cleavage sites on the T5 DNA. The localization of cleavage sites has been deduced from the electrophoretic pattern of double and partial digests, the digests of isolated restriction fragments and the digests of deletion mutant T5st(o) DNA.Four BamI cleavage sites have been found and localized on the physical map of T5 DNA at 0.21, 0.225, 0.685 and 0.725 fractional length. Endonuclease SmaI cleaves at 0.39, 0.59 and 0.69 fractional length. Endonuclease PstI cuts T5 DNA at 11 sites: 0.090, 0.210, 0.320, 0.510, 0.635, 0.670, 0.705, 0.770, 0.815, 0.840, 0.875 fractional length. Six KpnI cleavage sites have been mapped at 0.170, 0.215, 0.525, 0.755, 0.830, 0.850 fractional length. A complete cleavage map of the phage genome is presented for seven restriction enzymes.  相似文献   

16.
Summary The cytosine-containing DNA of a mutant of bacteriophage T4 was digested with restriction endonucleases SmaI, KpnI and BglII producing 5, 7 and 13 fragments respectively. Complete physical maps of the T4 genome were constructed with the enzymes SmaI and KpnI and an almost complete map with the enzyme BglII.  相似文献   

17.
We have cloned DNA restriction fragments from the largely nonessential region of bacteriophage T4 located between genes 39 and 56. The cloned DNA fragments were used to construct a precise map of the sites in this region recognized by eight restriction endonucleases. This restriction map allowed us to compare the cytosine-containing T4 DNA used for cloning with the hydroxymethylcytosine-containing DNA of wild-type T4; there were no detectable rearrangements in the region tested. We were also able to determine the physical locations of several deletion end points and of several genes.  相似文献   

18.
Endonuclease II of bacteriophage T4 is required for in vivo restriction of cytosine-containing DNA from its host, Escherichia coli, (as well as from phage mutants lacking cytosine modification), normally the first step in the reutilization of host DNA nucleotides for synthesis of phage DNA in infected cells. The phage cytosine-DNA is fragmented incompletely to yield genetically defined fragments. This restriction is different from that of type I, II, or III restriction enzymes. We have located seven major endonuclease II-dependent restriction sites in the T4 genome, of which three were analyzed in detail; in addition, abundant sites were cleaved in less than or equal to 5% of all molecules. Sites I, II, and III shared the sequence 5'-CCGNNTTGGC-3' and were cleaved in about 25% (I and III) and 65% (II) of all molecules, predominantly staggered around the first or second of the central unspecified base pairs to yield fragments with one 5' base. The less frequently cleaved sites I and III deviated from site II in predicted helical structure when viewed from the consensus strand, and in sequence when viewed from the opposite strand. Thus, interaction with a particular helical structure as well as recognition of the bases in DNA appears important for efficient cleavage.  相似文献   

19.
EcoRII can be activated to cleave refractory DNA recognition sites.   总被引:7,自引:5,他引:2  
EcoRII restriction sites [5'-CC(A/T)GG] in phage T3 and T7 DNA are refractory to cleavage by EcoRII, but become sensitive to cleavage in the presence of DNAs which contain an abundance of EcoRII sensitive sites (e.g. pBR322 or lambda DNA). Studies using fragments of pBR322 containing different numbers of EcoRII sites show that the susceptibility to EcoRII cleavage is proportional to the number of sites in the individual fragment. We postulate that EcoRII is the prototype of restriction endonucleases which require at least 2 simultaneously bound substrate sites for their activation. EcoRII sites are refractory when they occur at relatively low frequency in the DNA. The restriction enzyme can be activated by DNA with a higher frequency of sites.  相似文献   

20.
Summary The EcoRI digestion products of phage T4 DNA have been examined using a phage DNA transformation assay. A 2.6x106 Dalton fragment was found to contain the rII genes. This fragment was purified and then treated with HindIII endonuclease. The cleavage products were ligated to the vector plasmid pBR313 and viable recombinant plasmids recovered. A genetic assay was employed to demonstrate that the recombinants contained T4 DNA and to localize on the phage genetic map the EcoRI and HindIII sites cleaved during the construction of the plasmids. Preliminary characterization suggests that a fragment covering the beginning of the rIIA gene possibly contains a promotor which is active in uninfected cells.Abbreviations used Ap ampicillin - Tc tetracycline - Mdal 106 Daltons - bp base pairs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号