首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A l-fucose-containing arabinogalactan-protein that strongly inhibited hemagglutination by eel anti-H agglutinin of human O erythrocytes was purified from hot phosphate-buffered saline extracts of mature leaves of rape, Brassica campestris. The purified glycoconjugate consisted of 90% of the polysaccharide moiety comprising l-fucose, l-arabinose, d-galactose, 4-O-methyl-d-glucuronic acid, and d-glucuronic acid, and 4% of the hydroxyproline-rich protein portion. Upon methylation, periodate oxidation, and enzymatic degradation, we found that consecutive β-(→3)-linked d-galactopyranosyl residues constituted a backbone chain of the polysaccharide moiety, to which the side chains of β-(→6)-linked d-galactopyranosyl residues were attached through O-6. Most of l-arabinofuranosyl residues were linked as single units through 0-3 to the side chains while a small quantity of the sugar was present as (1→2)-, (1→3)-, or (1→5)-linked inter-chain residues. Single residues of α-l-fucopyranose, apparently attached to (1→2)-linked l-arabinofuranosyl residues, reacted with eel anti-H precipitin and Aleuria aurantia l-fucose-specific lectin, and were assumed to be crucial in the expression of the H-like activity. The uronosyl residues were also located at the non-reducing terminal ends. Reductive alkaline degradation of the arabinogalactan-protein provided indications that the polysaccharide chains were mainly conjugated through serine-O-glycosidic linkages to the polypeptide core. In an immunoprecipitation test, the rape leaf arabinogalactan-protein cross-reacted with antisera raised against radish leaf arabinogalactan-protein, indicating that these cruciferous arabinogalactan-proteins share common immunodeterminant(s) in their molecules.  相似文献   

2.
A pectin isolated from tobacco midrib contained residues of d-galacturonic acid (83.7%), L-rhamnose (2.2%), l-arabinose (2.4%) and d-galactose (11.2%) and small amounts of d-xylose and d-glucose. Methylation analysis of the pectin gave 2, 3, 5-tri- and 2, 3-di-O-methyl-l-arabinose, 3, 4-di- and 3-O-methyl-l-rhamnose and 2, 3, 6-tri-O-methyl-d-galactose. Reduction with lithium aluminum hydride of the permethylated pectin gave mainly 2, 3-di-O-methyl-d-galactose and the above methylated sugars. Partial acid hydrolysis gave homologous series of β-(1 → 4)-linked oligosaccharides up to pentaose of d-galactopyranosyl residues, and 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, and di- and tri-saccharides of α-(1 → 4)-linked d-galactopyranosyluronic acid residues.

These results suggest that the tobacco pectin has a backbone consisting of α-(1 → 4)-linked d-galactopyranosyluronic acid residues which is interspersed with 2-linked l-rhamnopyranosyl residues. Some of the l-rhamnopyranosyl residues carry substituents on C-4. The pectin has long chain moieties of β-(1 → 4)-linked d-galactopyranosy] residues.  相似文献   

3.
The structure of an acidic polysaccharide elaborated by Bacillus polymyxa S-4 was investigated in relation to its physiological activity, particularly, its hypocholesterolemic effect on experimental animals. The polysaccharide is composed of d-glucose, d-mannose, d-galactose, d-glucuronic acid, and d-mannuronic acid (molar ratio 3:3:1: 2:1). Methylation and fragmentation analyses, such as Smith degradation and partial acid hydrolysis showed that the polysaccharide has a complicated, highly branched structure, consisting mainly of (1 → 3)- and (1 → 4)-d-glycosidic linkages. The backbone chain containing d-glucuronic acid, d-mannose, and d-galactose residues is attached at the C-3, C-4, and C-4 positions, respectively, with side chains of single or a few carbohydrate units, which are terminated with d-glucose or d-mannose residues.  相似文献   

4.
The mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 was examined by investigating the properties of the enzymes involved in the hydrolysis of dl-5-substituted hydantoins. The enzymatic production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 involved the following two successive reactions; the d-isomer specific hydrolysis, i.e., the ring opening of d-5-substituted hydantoins to d-form N-carbamyl amino acids by an enzyme, d-hydantoin hydrolase (d-HYD hydrolase), followed by the d-isomer specific hydrolysis, i.e., the cleavage of N-carbamyl-d-amino acids to d-amino acids by an enzyme, N-carbamyl-d-amino acid hydrolase (d-NCA hydrolase).

l-5-Substituted hydantoins not hydrolyzed by d-HYD hydrolase were converted to d-form 5- substituted hydantoins through spontaneous racemization under the enzymatic reaction conditions.

It was proposed that almost all of the dl-5-substituted hydantoins were stoichiometrically and directly converted to the corresponding d-amino acids through the successive reactions of d-HYD hydrolase and d-NCA hydrolase in parrallel with the spontaneous racemization of l-5-substituted hydantoins to those of dl-form.  相似文献   

5.
d-Aminoacylase was found to be produced not only by S. olivaceus 62–3 isolated from soil but also by three strains of type culture of Streptomyces species. All four of these strains produced d-aminoacylase intracellularly only when an inducer was added to the culture medium. d-Amino acids or N-acetyl-d-amino acids were effective as inducers.

As S. tuirus showed the highest d-aminoacylase activity, the enzyme extract of this strain was subjected to further investigation to determine the optimal conditions for optical resolution of N-acetyl-dl-phenylglycine. Almost all contaminating l-aminoacylase in the enzyme extract could be eliminated by DEAE-Sephadex adsorption. d-Phenylglycine of 99.9% optical purity was obtained after complete hydrolysis of d-isomer with the use of d-aminoacylase solution.  相似文献   

6.
The glucomannan isolated from holocellulose pulp of Akamatsu (Pinus densiflora Sieb. et Zucc.) as its triacetate was methylated and the following methylated sugars were obtained by hydrolysis: the 2,3,4,6-tetra-O-methyl ethers of d-glucose and d-mannose (I part) and the 2,3,6-tri-O-methyl ethers of d-mannose and d-glucose (34–37 parts). Periodate oxidation of the glueomannan showed that 1.00 mole of periodate was consumed per mole of hexose unit and 3 moles of formic acid liberated for every 33 hexose units.  相似文献   

7.
Acidic heteropolysaccharides, d-glucurono-d-xylo-d-mannans were isolated from the water- and alkaline extracts of the fruit body of Tremella fuciformis Berk. Similar polysaccharides were isolated from the growing culture of the haploid cells of two strains (T–19 and T–7) of T. fuciformis, when they were cultured in sucrose or glucose-yeast extract medium. The extracellular polysaccharides contain, d-glucuronic acid, d-xylose and d-mannose [molar ratios, 1.3: 1.0: 3.5 (T–7) and 0.8: 1.0: 2.1 (T–19)], and, in addition, small proportions of l-fucose and O-acetyl groups. Methylation and Smith degradation studies indicated that both fruit body and extracellular polysaccharides are built up of α-(1 → 3)-linked d-mannan backbone chain to which β-linked d-glucuronic acid and single or short chains of β-(1 → 2)-linked d-xylose residues are attached at the C–2 position. l-fucose residues in the extracellular polysaccharides may form the single branches. The structural features of these polysaccharides are discussed in comparison with the similar polysaccharides from other fungi.  相似文献   

8.
The acceptor specificity of amylomaltase from Escherichia coli IFO 3806 was investigated using various sugars and sugar alcohols. d-Mannose, d-glucosamine, N-acetyl- d-glucosamine, d-xylose, d- allose, isomaltose, and cellobiose were efficient acceptors in the transglycosylation reaction of this enzyme. It was shown by chemical and enzymic methods that this enzyme could transfer glycosyl residues only to the C4-hydroxyl groups of d-mannose, iY-acetyl- d-glucosamine, d-allose, and d-xylose, producing oligosaccharides terminated by 4–0-α-d-glucopyranosyl-d-mannose, 4–0-α-d-glucopyranosyl-yV-acetyl-d-glucosamine, 4-O-α-d-glucopyranosyl-d-allose, and 4–0-α-d-gluco- pyranosyl-d-xylose at the reducing ends, respectively.  相似文献   

9.
The cell wall polysaccharide of cotyledon of Tora-bean (Phaseolus vulgaris), which surrounds starch granules, was isolated from saline-extraction residues of homogenized cotyledon, as alkali-insoluble fibrous substance. Alkali-insoluble residue, which had been treated with α-amylase (Termamyl), had a cellulose-like matrix under the electron microscope. It was composed of l-arabinose, d-xylose, d-galactose and d-glucose (molar ratio, 1.0: 0.2: 0.1: 1.2) together with a trace amount of l-fucose. Methylation followed by hydrolysis of the polysaccharide yielded 2, 3, 5-tri-O-methyl-l-arabinose (3.3 mol), 2, 3, 4-tri-O-methyl-d-xylose (1.0 mol), 2, 3-di-O-methyl-l-arabinose (3.7 mol), 3, 4-di-O-methyl-d-xylose (1.0 mol), 2-O-methyl-l-arabinose and 2, 3, 6-tri-O-methyl-d-glucose (12.7 mol), 2, 6-di-O-methyl-d-glucose (1.2 mol) and 2, 3-di-O-methyl-d-glucose (1.0 mol).

Methylation analysis, Smith degradation and enzymatic fragmentation with cellulase and α-l-arabinofuranosidase showed that the l-arabinose-rich alkali-insoluble polysaccharide possesses a unique structural feature, consisting of β-(1 → 4)-linked glucan backbone, which was attached with side chains of d-xylose residue and β-d-galactoxylose residue at O-6 positions and α-(1 → 5)-linked l-arabinosyl side cains (DP=8) at O-3 positions of β-(1 → 4)-linked d-glucose residues, respectively.  相似文献   

10.
Partial acid hydrolysis of Saccharomyces cerevisiae mannan gave 2-O-α-d-Manp-d-Man (1), 3-O-α-d-Manp-d-Man (2), 6-O-α-d-Manp-d-Man (3), O-α-d Manp-(1→2)O-α-d-Manp-(1→2)-d-Man (4), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-d-Man (5), O-α-d Manp-(1→6)-6-O-α-d-Manp-(1→6)-d-Man (6), O-α-d Manp-(1→2)-O-α-d-Manp-(1→2)-6-O-α-d-Manp-(1→6)-d-Man (7), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-O-α-d-Manp-(1→6)-d-Man (8), and O-α-d-Manp-(1→6)-O-[α-d-Manp-(1→2)]-O-α-d-Manp-(1→6)-d-Man (9).  相似文献   

11.
An acidic polysaccharide (APS-H) purified from the hemicellulosic fraction of the midrib of Nicotiana tabacum was composed of d-galacturonic acid, l-rhamnose, l-arabinose and d-galactose in a molar ratio of 31.8: 15.4: 9.9: 42.9. Its molecular weight was estimated to be 90,000 by gel filtration chromatography. APS-H had a pectin-like structure in which the rhamnogalacturonan backbone was composed of (1 → 2)-linked l-rhamnopyranosyl and (1 → 4)-linked d-galacturonosyl residues in a ratio of approximately 1: 2.1. It also contained (1 → 4)-linked d-galactan and (1 → 5)-linked l-arabinofuranosyl moieties as the side chains. Branch points occurred mainly at C-4 of (1 → 2)-linked l-rhamnosyl residues in the backbone and at C-6 of (1 → 4)-linked d-galactosyl residues in the side chains.  相似文献   

12.
Carbohydrate isomerases/epimerases are essential in carbohydrate metabolism, and have great potential in industrial carbohydrate conversion. Cellobiose 2-epimerase (CE) reversibly epimerizes the reducing end d-glucose residue of β-(1→4)-linked disaccharides to d-mannose residue. CE shares catalytic machinery with monosaccharide isomerases and epimerases having an (α/α)6-barrel catalytic domain. Two histidine residues act as general acid and base catalysts in the proton abstraction and addition mechanism. β-Mannoside hydrolase and 4-O-β-d-mannosyl-d-glucose phosphorylase (MGP) were found as neighboring genes of CE, meaning that CE is involved in β-mannan metabolism, where it epimerizes β-d-mannopyranosyl-(1→4)-d-mannose to β-d-mannopyranosyl-(1→4)-d-glucose for further phosphorolysis. MGPs form glycoside hydrolase family 130 (GH130) together with other β-mannoside phosphorylases and hydrolases. Structural analysis of GH130 enzymes revealed an unusual catalytic mechanism involving a proton relay and the molecular basis for substrate and reaction specificities. Epilactose, efficiently produced from lactose using CE, has superior physiological functions as a prebiotic oligosaccharide.  相似文献   

13.
The electrophoretically homogeneous glucomannan isolated from konjac flour was composed of d-glucose and d-mannose residues in the approximate ratio of 1: 1.6. Controlled acid hydrolysis gave 4-O-β-d-mannopyranosyl-d-mannose, 4-O-β-d-mannopyranosyl-d-glucoseT 4-O-β-d-glucopyranosyl-d-glucose(cellobiose), 4-O-β-d-glucopyranosyl-d-mannose(epicellobiose), O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-glucopyranosyl- (1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-mannopyranosyl-(1→4)-O-β-d-glucopy- ranosyl-(1→4)-d-mannose and O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-d-mannose.  相似文献   

14.
The fractional determination of d-glutamic and d-aspartic acids using the enzyme preparation of Aspergillus ustus strain f. was studied. In the first part of this paper, the procedure of enzyme preparation, the effect of sodium chloride on enzyme activity, and a new device for the fractional determination of d-glutamic and d-aspartic acids are described. In the latter part, the contents of d-glutamic and d-aspartic acids of cancer and normal tissues are estimated. However, it was found that the cancer tissues are not characterized by the presence of d-glutamic acid in opposition to Kögl’s claim.  相似文献   

15.
Growth of various microorganisms in media containing high concentrations of glycine or d-amino acids was examined. Susceptibilities to glycine or d-amino acids differed among microorganisms, and the differences in susceptibility have no direct relation with Gram staining, morphological forms, and aerobic or anaerobic nature of the organisms. Certain glycine-resistant bacteria tested, which included Bacillus cereus, Staphylococcus aureus and Serratia marcescens, exhibited relatively high oxidative activities towards glycine. The inhibition of the growth of Escherichia coli by either glycine or d-amino acids, which included d-threonine, d-alanine and d-lysine, was reversed by l-alanine, partialy by l-serine, and not by l-lysine or l-threonine. These results suggest that the growth inhibition of microorganisms by d-amino acids was similar to that by glycine. The incorporation of l-alanine into E. coli cells which were preincubated with glycine was less than those of preincubated without glycine. Particularly, the incorporation into the cell wall fraction was most susceptible to glycine. An additive effect of penicillin and glycine was observed in the inhibition of cell wall biosynthesis as determined by the intracellular accumulation of N-acetylamino sugar compounds.  相似文献   

16.
Partial acid hydrolysis of asterosaponin A, a steroidal saponin, afforded two new disaccharides in addition to O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose which has been characterized in the preceding paper. The formers were demonstrated as O-(6-deoxy-α-d-galactopyranosyl)-(1→4)-6-deoxy-d-glucose and O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-6-deoxy-d-galactose, respectively.

Accordingly, the structure of carbohydrate moiety being composed of two moles each of 6-deoxy-d-galactose and 6-deoxy-d-glucose, was established as O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose, which is attached to the steroidal aglycone through an O-acetal glycosidic linkage.  相似文献   

17.
Corynebacterium sp. SHS 0007 accumulated 2-keto-l-gulonate and 2-keto-d-gluconate simultaneously with 2,5-diketo-d-gluconate utilization. This strain, however, possibly metabolized 2,5- diketo-d-gluconate through two pathways leading to d-gluconate as a common intermediate: via 2- keto-d-gluconate, and via 2-keto-l-gulonate, l-idonate and 5-keto-d-gluconate. A polysaccharide- negative, 2-keto-l-gulonate-negative and 5-keto-d-gluconate-negative mutant produced only calcium 2-keto-l-gulonate from calcium 2,5-diketo-d-gluconate, in a 90.5 mol% yield. The addition of a hydrogen donor such as d-glucose was essential for its production. This mutant possessed the direct oxidation route of d-glucose to d-gluconate, the pentose cycle pathway and a possible Embden-Meyerhof-Parnas pathway, indicating that d-glucose was metabolized through these three pathways and provided NADPH for the reduction of 2,5-diketo-d-gluconate.  相似文献   

18.
Tyrosine phenol lyase catalyzes a series of α,β-elimination, β-replacement and racemization reactions. These reactions were studied with intact cells of Erwinia herbicola ATCC 21434 containing tyrosine phenol lyase.

Various aromatic amino acids were synthesized from l-serine and phenol, pyrocatechol, resorcinol or pyrogallol by the replacement reaction using the intact cells. l(d)-Tyrosine, 3,4-dihydroxyphenyl-l(d)-alanine (l(d)-dopa), l(d)-serine, l-cysteine, l-cystine and S-methyl-l-cysteine were degraded to pyruvate and ammonia by the elimination reaction. These amino acids could be used as substrate, together with phenol or pyrocatechol, to synthesize l-tyrosine or l-dopa via the replacement reaction by intact cells. l-Serine and d-serine were the best amino acid substrates for the synthesis of l-tyrosine or l-dopa. l-Tyrosine and l-dopa synthesized from d-serine and phenol or pyrocatechol were confirmed to be entirely l-form after isolation and identification of these products. The isomerization of d-tyrosine to l-tyrosine was also catalyzed by intact cells.

Thus, l-tyrosine or l-dopa could be synthesized from dl-serine and phenol or pyrocatechol by intact cells of Erwinia herbicola containing tyrosine phenol lyase.  相似文献   

19.
ABSTRACT

Maltose phosphorylase (MP), a glycoside hydrolase family 65 enzyme, reversibly phosphorolyzes maltose. In this study, we characterized Bacillus sp. AHU2001 MP (MalE) that was produced in Escherichia coli. The enzyme exhibited phosphorolytic activity to maltose, but not to other α-linked glucobioses and maltotriose. The optimum pH and temperature of MalE for maltose-phosphorolysis were 8.1 and 45°C, respectively. MalE was stable at a pH range of 4.5–10.4 and at ≤40°C. The phosphorolysis of maltose by MalE obeyed the sequential Bi–Bi mechanism. In reverse phosphorolysis, MalE utilized d-glucose, 1,5-anhydro-d-glucitol, methyl α-d-glucoside, 2-deoxy-d-glucose, d-mannose, d-glucosamine, N-acetyl-d-glucosamine, kojibiose, 3-deoxy-d-glucose, d-allose, 6-deoxy-d-glucose, d-xylose, d-lyxose, l-fucose, and l-sorbose as acceptors. The kcat(app)/Km(app) value for d-glucosamine and 6-deoxy-d-glucose was comparable to that for d-glucose, and that for other acceptors was 0.23–12% of that for d-glucose. MalE synthesized α-(1→3)-glucosides through reverse phosphorolysis with 2-deoxy-d-glucose and l-sorbose, and synthesized α-(1→4)-glucosides in the reaction with other tested acceptors.  相似文献   

20.
A trisaccharide consisting of two d-xylose units and one l-arabinose unit, and a tetrasaccharide consisting of three d-xylose units and one l-arabinose unit were isolated from the hydrolyzate of rice-straw arabinoxylan by the xylanase I produced by Asp. niger.

The structures of the trisaccharide and the tetrasaccharide were determined to be 31-α-l-arabinofuranosylxylobiose ([α]d? 80°) and 31-α-l-arabinofuranosylxylotriose ([α]d? 84°), respectively, by chemical and enzymic methods.

According to the structures of two arabinose-xylose mixed oligosaccharides, it was shown that the rice-straw arabinoxylan is composed of chain of 1,4-linked βd-xylopyranose residues and some of xylose residues have side-chain of 1,3-linked α-l-arabinofuranose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号