首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two isozymes (E1 and E2) of human aldehyde dehydrogenase (EC 1.2.1.3) were purified to homogeneity 13 years ago and a third isozyme (E3) with a low Km for gamma-aminobutyraldehyde only recently. Comparison with a variety of substrates demonstrates that substrate specificity of all three isozymes is broad and similar. With straight chain aliphatic aldehydes (C1-C6) the Km values of the E3 isozyme are identical with those of the E1 isozyme. All isozymes dehydrogenate naturally occurring aldehydes, 5-imidazoleacetaldehyde (histamine metabolite) and acrolein (product of beta-elimination of oxidized polyamines) with similar catalytic efficiency. Differences between the isozymes are in the Km values for aminoaldehydes. Although all isozymes can dehydrogenate gamma-aminobutyraldehyde, the Km value of the E3 isozyme is much lower: the same appears to apply to aldehyde metabolites of cadaverine, agmatine, spermidine, and spermine for which Km values range between 2-18 microM and kcat values between 0.8-1.9 mumol/min/mg. Thus, the E3 isozyme has properties which make it suitable for the metabolism of aminoaldehydes. The physiological role of E1 and E2 isozymes could be in dehydrogenation of aldehyde metabolites of monoamines such as 3,4-dihydroxyphenylacetaldehyde or 5-hydroxyindoleacetaldehyde; the catalytic efficiency with these substrates is better with E1 and E2 isozymes than with E3 isozyme. Isoelectric focusing of liver homogenates followed by development with various physiological substrates together with substrate specificity data suggest that aldehyde dehydrogenase (EC 1.2.1.3) is the only enzyme in the human liver capable of catalyzing dehydrogenation of aldehydes arising via monoamine, diamine, and plasma amine oxidases. Although the enzyme is generally considered to function in detoxication, our data suggest an additional function in metabolism of biogenic amines.  相似文献   

2.
Evidence is presented for two new forms of mouse liver and kidney aldehyde reductase activity (designated AHR-3 and AHR-4) resolved using cellulose acetate electrophoresis zymogram techniques and stained by glyceraldehyde and NADPH as substrate and coenzyme, respectively. Activity variants were observed for those isozymes among inbred strains of mice and used in a genetic analyses to support a proposal for two new genetic loci (Ahr-3 and Ah-4) which control the activity phenotype for these isozymes. Segregation analysis indicated that these loci are separately localized on the mouse genome, with Ahr-3 positioned on the distal end of chromosome 7. Liver AHR-2 (or hexonate dehydrogenase) exhibited no detectable phenotypic variation among the 44 inbred strains of mice examined. The AHR-3 and AHR-4 isozymes were readily distinguished from AHR-1 [or aldehyde reductase A2, described previously by Duley and Holmes (Biochem. Genet. 20:1067, 1982)], hexonate dehydrogenase (AHR-2), and alcohol dehydrogenase A2 in terms of their differential substrate, coenzyme, and inhibitor specificities.  相似文献   

3.
The subcellular distribution and relative amounts of the two isozymes, F1 and F2, of aldehyde dehydrogenase (EC 1.2.1.3) which were recently purified to homogeneity from horse liver (Eckfeldt, J., et al. (1976) J. Biol. Chem.251, 236–240) have been investigated. A fresh horse liver homogenate was fractionated on DEAE-cellulose. The results indicate that approximately 60% of the total pH 7.0 acetaldehyde dehydrogenase activity is due to the F1 isozyme and 40% is due to the F2 isozyme. Several horse livers were then fractionated into subcellular components using a differential centrifugation method. Based on the disulfiram (Antabuse) inhibition and the aldehyde concentration dependence of the enzymatic activity, it appears that the disulfiram-sensitive F1 isozyme (Km acetaldehyde ? 70 μm) is primarily cytosolic and the disulfiram-insensitive F2 isozyme (Km acetaldehyde ? 0.2 μm) is primarily mitochondrial. Fluorescence studies showed that the acetaldehyde dehydrogenase of the intact mitochondria could utilize only the endogenous pyridine nucleotide pool and not externally added NAD. Also, the ethanol dehydrogenase activity was found to be nearly 10 times the total acetaldehyde dehydrogenase activity when assaying a horse liver homogenate at pH 7.0 and with saturating substrates. The significant differences between this work and the results reported in rat liver are discussed with respect to the physiological importance of the cytosolic and mitochondrial aldehyde dehydrogenase during the ethanol oxidation in vivo.  相似文献   

4.
Betaine aldehyde oxidation by spinach chloroplasts   总被引:30,自引:7,他引:23       下载免费PDF全文
Chenopods synthesize betaine by a two-step oxidation of choline: choline → betaine aldehyde → betaine. Both oxidation reactions are carried out by isolated spinach (Spinacia oleracea L.) chloroplasts in darkness and are promoted by light. The mechanism of betaine aldehyde oxidation was investigated with subcellular fractions from spinach leaf protoplasts. The chloroplast stromal fraction contained a specific pyridine nucleotide-dependent betaine aldehyde dehydrogenase (about 150 to 250 nanomoles per milligram chlorophyll per hour) which migrated as one isozyme on native polyacrylamide gels stained for enzyme activity. The cytosol fraction contained a minor isozyme of betaine aldehyde dehydrogenase. Leaves of pea (Pisum sativum L.), a species that lacks betaine, had no betaine aldehyde dehydrogenase isozymes. The specific activity of betaine aldehyde dehydrogenase rose three-fold in spinach plants grown at 300 millimolar NaCl; both isozymes contributed to the increase. Stimulation of betaine aldehyde oxidation in illuminated spinach chloroplasts was due to a thylakoid activity which was sensitive to catalase; this activity occurred in pea as well as spinach, and so appears to be artifactual. We conclude that in vivo, betaine aldehyde is oxidized in both darkness and light by the dehydrogenase isozymes, although some flux via a light-dependent, H2O2-mediated reaction cannot be ruled out.  相似文献   

5.
The aldehyde dehydrogenase (Aldehyde:NAD(P) oxidoreductase E.C. 1.2.1.3. and 1.2.1.5) phenotype in several tissues of the Mongolian gerbil, Meriones unguiculatus, has been established. The tissue distribution of gerbil aldehyde dehydrogenase is similar to that of the rat, with liver possessing the majority of the aldehyde dehydrognease activity. Male kidney and testis possess significantly more activity than female kidney and ovary. The substrate and co-enzyme specificity of gerbil liver aldehyde dehydrogenase is also similar to that of rat and mouse liver. Gel isoelectric focusing resolves one major gerbil liver aldehyde dehydrogenase isozyme at pI 5.3. Mouse liver is resolved into two major isozymes at pIs 5.3 and 5.6 and rat liver aldehyde dehydrogenase into one major isozyme at pI 5.4. Gerbil liver aldehyde dehydrogenase is functional over a broad pH range with an optima at pH 9.0. Rat and mouse liver aldehyde dehydrogenase possess sharp pH optima at pH 8.5.  相似文献   

6.
Electrophoretic and activity variants have been observed for stomach and testis aldehyde dehydrogenases, respectively, among inbred strains of the house mouse (Mus musculus). Genetic evidence was obtained for two new loci encoding these isozymes (designated Ahd-4 and Ahd-6, respectively, for the stomach and testis isozymes) which segregated independently of a number of mouse gene markers, including Ahd-1 (encoding mitochondrial aldehyde dehydrogenase) on chromosome 4, ep (pale ears), a marker for chromosome 19, on which Ahd-2 (encoding liver cytosolic aldehyde dehydrogenase) has been previously localized, and Adh-3 (encoding the stomach-specific isozyme of alcohol dehydrogenase) on chromosome 3. Recombination studies have indicated, however, that Ahd-4 and Ahd-6 are distinct but closely linked loci on the mouse genome. An extensive survey of the distribution of Ahd-1, Ahd-2, Ahd-4, and Ahd-6 alleles among 56 strains of mice is reported. No variants have been observed, so far, for the microsomal (AHD-3) and mitochondrial/cytosolic (AHD-5) isozymes previously described. This study, in combination with previous investigations on mouse aldehyde dehydrogenases, provides evidence for six genetic loci for this enzyme.  相似文献   

7.
Two isozymes of horse liver aldehyde dehydrogenase (aldehyde, NAD oxidoreductase (EC 1.2.1.3)), F1 and F2, have been purified to homogeneity using salt fractionation followed by ion exchange and gel filtration chromatography. The specific activities of the two isozymes in a pH 9.0 system with propionaldehyde as substrate were approximately 0.35 and 1.0 mumol of NADH/min/mg of protein for the F1 and F2 isozymes, respectively. The multiporosity polyacrylamide gel electrophoresis molecular weights of the F1 and F2 isozymes were approximately 230,000 and 240,000 respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave subunit molecular weight estimates of 52,000 and 53,000 for the F1 and F2 isozymes, respectively. The amino acid compositions of the two isozymes were found to be similar; the ionizable amino acid contents being consistent with the electrophoretic and chromatographic behavior of the two isozymes. Both isozymes exhibited a broad aldehyde specificity, oxidizing a wide variety of aliphatic and aromatic aldehydes and utilized NAD as coenzyme, but at approximately 300-fold higher coenzyme concentration could use NADP. The F1 isozyme exhibited a very low Km for NAD (3 muM) and a higher Km for acetaldehyde (70 muM), while the F2 isozyme was found to have a higher Km for NAD (30 muM) and a low Km for acetaldehyde (0.2 muM). The two isozymes showed similar chloral hydrate and p-chloromercuribenzoate inhibition characteristics, but the F1 isozyme was found to be several orders of magnittude more sensitive to disulfiram, a physiological inhibitor of acetaldehyde oxidation. Based on its disulfiram inhibition characteristics, it has been suggested that the F1 isozyme may be the primary enzyme for oxidizing the acetyldehyde produced during ethanol oxidation in vivo.  相似文献   

8.
V A Rizzoli  C R Rossi 《Enzyme》1988,39(1):28-43
In intact rat liver mitochondria acetaldehyde is oxidized by three functionally distinct dehydrogenase systems. Two of these reduce intramitochondrial nicotinamide adenine dinucleotide (NAD): one is operative with micromolar acetaldehyde concentrations and is stimulated by Mg2+, the other is operative with millimolar acetaldehyde concentrations and is stimulated by adenosine 5'-triphosphate (ATP). The third system reduces added NAD and is stimulated by rotenone. Connected to these systems, three aldehyde dehydrogenase isozymes (ALDH) have been purified: a low-Km ALDH activated by Mg2+, a high-Km ALDH activated by ATP and Mg2+, a high-Km ALDH activated by rotenone. The properties of some isozymes are affected by detergents. Thus, deoxycholate augments the stimulation of low-Km isozyme by Mg2+ and confers sensitivity to Mg2+ and ATP on one of the high-Km isozymes. A fourth isozyme has been purified. Its affinity for acetaldehyde is so low that it is very unlikely that acetaldehyde is the physiological substrate.  相似文献   

9.
We have proposed developing rat hepatoma cell lines as an in vitro model for studying the regulation of changes in aldehyde dehydrogenase activity occurring duringhepatocarcinogenesis. Aldehyde dehydrogenase purified in a single step from HTC rat hepatoma cells is identical to the aldehyde dehydrogenase isolated from rat hepatocellular carcinomas. HTC aldehyde dehydrogenase is a 110 kDa dimer composed of 54-kDa subunits, prefers NADP+ as coenzyme, and preferentially oxidizes benzaldehyde-like aromatic aldehydes but not phenylacetaldehyde. The substrate and coenzyme specificity, effects of disulfiram, pH profile and isoelectric point of HTC aldehyde dehydrogenase are also identical to these same properties of the tumor aldehyde dehydrogenase. In immunodiffusions, both isozymes are recognized with complete identity by anti-HTC aldehyde dehydrogenase antibodies. Having established that HTC aldehyde dehydrogenase is very similar, if not identical, to the aldehyde dehydrogenase found in hepatocellular carcinomas, simplifies the development of molecular probes for examination of the regulation of tumor aldehyde dehydrogenase activity in vivo and in vitro.  相似文献   

10.
The purification and properties of 4 inducible cytosolic rat liver aldehyde dehydrogenase isozymes are described. Based on their behavior during purification and their properties, the activities can be grouped into 2 classes. The isozyme inducible in normal liver by 2,3,7,8-tetrachlorodibenzo-p-dioxin and the tumor-specific isozyme found in hepatocellular carcinomas have apparent molecular weights of 110,000, prefer NADP+ as coenzyme, and preferentially oxidize benzaldehyde-like aromatic aldehydes, but not phenylacetaldehyde. They also have identical pH profiles and responses to effectors. These isozymes differ slightly in isoelectric point and thermal stability. The normal liver phenobarbital-inducible isozyme and the isozyme appearing during the promotion phase of hepatocarcinogenesis appear to be identical. Both have apparent molecular weights of 165,000, are NAD-specific and prefer aliphatic aldehydes. They can oxidize phenylacetaldehyde, but not benzaldehyde-like aromatic aldehydes. They also have identical pH and thermal stability profiles and responses to effectors. While the 4 inducible isozymes share identical subunit molecular weights (54,000) with the normal liver millimolar Km aldehyde dehydrogenases, they are distinctly different enzymatic species. The interrelationships of the various normal liver and inducible rat liver aldehyde dehydrogenases are discussed.  相似文献   

11.
New disulphides synthesized on the basis of dithiocarboxylic acid derivatives and heterocyclic thiols containing the fluorine atoms were studied as applied to inhibit aldehyde dehydrogenase (ALDH) isozymes of the rat liver mitochondria. The most effective rat liver inhibitors of ALDH isozymes were revealed. Inhibition of the rat liver isozymes by disulphides I, II, IV, VI-VIII and fluorinated pyridine disulphide was found to be irreversible. The values of isozyme inactivation rate constants are reported. The ALDH inhibition by disulphides I, IV, VI-VIII was competitive both for the cofactor and for the substrate of the reaction. The protective effect of the NAD+ against ALDH I and II inactivation by disulfiram and disulphides I, IV, VI-VIII and X is shown. NADP+ protects isozyme II against inactivation by disulfiram and also disulphides I, VI-VIII.  相似文献   

12.
1. A series of aldehyde dehydrogenase isozymes (aldehyde:NAD (P)+ oxidoreductase, EC 1.2.1.5), has been purified from hepatomas induced in Sprague-Dawley rats by 2-acetylaminofluorene. 2. The functional hepatoma-specific aldehyde dehydrogenase isozymes exist as 105 000-dalton dimers composed to two subunits of 53 000 daltons. Isoelectric points of the purified isozymes are 6.9-7.2. 3. Antiserum to these purified hepatoma-specific aldehyde dehydrogenases has been produced and the immunological relationships of these isozymes to their normal liver counterpart have been studied. Results of Ouchterlony double diffusions, agar-gel immunoelectrophoresis and polyacrylamide gel and agar immunoelectrophoresis indicate that anti-hepatoma aldehyde dehydrogenase antiserum cross-reacts with normal liver aldehyde dehydrogenase.  相似文献   

13.
Antibodies against purified NADP-isocitrate dehydrogenase from pig liver cytosol and pig heart were raised in rabbits. The purified enzymes from these sources are different proteins, as demonstrated by differences in electrophoretic mobility and absence of crossreactivity by immunotitration and immunodiffusion. The NADP-isocitrate dehydrogenase in the soluble supernatant homogenate fraction from pig liver, kidney cortex, brain and erythrocyte hemolyzate was identical with the purified enzyme from pig liver cytosol, as determined by electrophoretic mobility and immunological techniques. The enzyme in extracts of mitochondria from pig heart, kidney, liver and brain was identical with the purified pig heart enzyme by the same criteria. However, the 'mitochondrial' isozyme was the major component also in the soluble supernatant fraction of pig heart homogenate. The 'cytosolic' isozyme accounted for only 1-2% of total NADP-isocitrate dehydrogenase in pig heart, as determined by separation of the isozymes with agarose gel electrophoresis and immunotitration. The mitochondrial isozyme was also the predominant NADP-isocitrate dehydrogenase in porcine skeletal muscle. The ratio of cytosolic/mitochondrial isozyme for porcine whole tissue extract, determined by immunotitration, was about 2 for liver and 1 for kidney cortex and brain. The distribution of isozymes in cell homogenate fractions from ox and rat tissues corresponded to that observed in organs of porcine origin. The mitochondrial and cytosolic isozymes from ox and rat tissues exhibited crossreactivity with the antibodies against the pig heart and pig liver cytosol enzyme, respectively, and the electrophoretic migration patterns were similar qualitatively to those found for the isozymes in porcine tissues. Nevertheless, there were species specific differences in the characteristics of each of the corresponding isozymes. NAD-isocitrate dehydrogenase was not inhibited by the antibodies, confirming that the protein is distinct from that of either isozyme of NADP-isocitrate dehydrogenase.  相似文献   

14.
Cellulose acetate zymograms of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (AHD), aldehyde reductase (AHR), aldehyde oxidase (AOX) and xanthine oxidase (XOX) extracted from horse tissues were examined. Five ADH isozymes were resolved: three corresponded to the previously reported class I ADHs (EE, ES and SS) (Theorell, 1969); a single form of class II ADH (designated ADH-C2) and of class III ADH (designated ADH-B2) were also observed. The latter isozyme was widely distributed in horse tissues whereas the other enzymes were found predominantly in liver. Four AHD isozymes were differentially distributed in subcellular preparations of horse liver: AHD-1 (large granules); AHD-3 (small granules); and AHD-2, AHD-4 (cytoplasm). AHD-1 was more widely distributed among the horse tissues examined. Liver represented the major source of activity for most AHDs. A single additional form of NADPH-dependent AHR activity (identified as hexonate dehydrogenase), other than the ADHs previously described, was observed in horse liver. Single forms of AOX and XOX were observed in horse tissue extracts, with highest activities in liver.  相似文献   

15.
Electrophoretic variants for the mitochondrial isozyme of aldehyde dehydrogenase (AHD) have been observed in inbred strains and in Harwell linkage testing stocks of Mus musculus. F1 (LVC×C57BL/Go) mice showed a codominant allele three-banded phenotype, which suggests a dimeric subunit structure (designated AHD-A2). The anodal-migrating supernatant isozyme of AHD was electrophoretically invariant among the 23 inbred strains and stocks examined. The genetic locus encoding AHD-A2 (suggested name Ahd-1) is localized on chromosome 4 and was mapped close to je (jerker) and Gpd-1 (encoding the liver and kidney isozyme of glucose-6-phosphate dehydrogenase). Ontogenetic analyses demonstrated that both AHD isozymes exhibited low activity in late fetal and early neonatal liver and kidney extracts, and reached adult levels within 3 weeks of birth.  相似文献   

16.
Most Caucasians have two major liver aldehyde dehydrogenase isozymes, ALDH1 and ALDH2, while approximately 50% of Orientals have only ALDH1 isozyme, missing the ALDH2 isozyme. A remarkably higher frequency of acute alcohol intoxication among Orientals than among Caucasians could be related to the absence of the ALDH2 isozyme, which has a low apparent Km for acetaldehyde. Examination of liver extracts by two-dimensional crossed immunoelectrophoresis revealed that an atypical Japanese liver, which had no ALDH2 isozyme, contained an enzymatically inactive but immunologically cross-reactive material corresponding to ALDH2, beside the active ALDH1 isozyme. Therefore, the absence of ALDH2 isozyme in atypical Orientals is not due to regulatory mutation, gene deletion, or nonsense mutation, but must be due to a structural mutation in a gene for the ALDH2 locus, resulting in synthesis of enzymatically inactive abnormal protein.  相似文献   

17.
Interspecific genetic differences in malate dehydrogenase (MDH), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and esterase (EST) isozymes in carp (Cyprinus carpio) and goldfish (Carassius auratus) were used to examine the allelic expressions in the hybrid between these species. A unique liver SOD and muscle LDH phenotype unambiguously identifies all presumed hybrid individuals. There was no evidence of F2 or backcross phenotypes in hybrid individuals. Liver MDH and EST phenotypes in hybrids show a preferential expression of goldfish isozymes. Variation in the levels of carp liver MDH isozymes may result from the polymorphism of a regulatory mutation affecting isozyme expression, leading to gene silencing after duplication.This work was supported through NSERC (Canada) grants to James P. Bogart and John F. Leatherland.  相似文献   

18.
In the teleost fish Fundulus heteroclitus, there are three NADP-dependent isocitrate dehydrogenase isozymes. IDH-B2 is the only cytoplasmic isozyme, and IDH-C2 dominates the mitochondria of all tissues other than liver, where IDH-A2 is expressed. Since fish are ectotherms, their intracellular temperature and pH change directly with environmental temperature. In order to evaluate the influence of these environmental parameters on a model fish NADP-isocitrate dehydrogenase system, the major cytoplasmic (IDH-B2) and mitochondrial (IDH-C2) isozymes were kinetically evaluated as a function of pH and temperature. Whereas Vfmax and KmISOCm (where ISOC is isocitrate) were pH-independent, the Km for NADP was pH-dependent for both isozymes. The cytoplasmic isozyme (IDH-B2) had smaller KmNADP values between pH 7.0 and pH 8.0 than the mitochondrial form (IDH-C2). Vfmax and Km for substrate and coenzyme were temperature-dependent. Energy of activation for IDH-B2 and IDH-C2 was 10.6 and 12.8 kcal/mol, respectively. Both proteins had delta G not equal to values of about 15.8 kcal/mol, with significantly different distributions between delta H not equal to and delta S not equal to. The cytoplasmic isozyme (IDH-B2) appears to have a greater rate of catalysis than the mitochondrial enzyme (IDH-C2) at temperatures less than 30 degrees C. Moreover, the IDH-B2 isozyme had lower KmNADP values than the IDH-C2 isozyme at all temperatures, whereas the KmISOC values for the two isozymes were indistinguishable. Our data suggest that the two major NADP-dependent isocitrate dehydrogenase isozymes have unique physiological and metabolic functions that are adapted to the tissues and cellular compartments in which they are expressed.  相似文献   

19.
1. Cellulose acetate zymograms of alcohol dehydrogenase (ADH), aldehyde dehydrogenase, sorbitol dehydrogenase, aldehyde oxidase, "phenazine" oxidase and xanthine oxidase extracted from tissues of inbred mice were examined. 2. ADH isozymes were differentially distributed in mouse tissues: A2--liver, kidney, adrenals and intestine; B2--all tissues examined; C2--stomach, adrenals, epididymis, ovary, uterus, lung. 3. Two NAD+-specific aldehyde dehydrogenase isozymes were observed in liver and kidney and differentially distributed in other tissues. Alcohol dehydrogenase, aldehyde oxidase, "phenazine" oxidase and xanthine oxidase were also stained when aldehyde dehydrogenase was being examined. 4. Two aldehyde oxidase isozymes exhibited highest activities in liver. 5. "Phenazine oxidase" was widely distributed in mouse tissues whereas xanthine oxidase exhibited highest activity in intestine and liver extracts. 6. Genetic variants for ADH-C2 established its identity with a second form of sorbitol dehydrogenase observed in stomach and other tissues. The major sorbitol dehydrogenase was found in high activity in liver, kidney, pancreas and male reproductive tissues.  相似文献   

20.
The ability of S. putrefaciens to reduce Fe(III) complexed by a variety of ligands has been investigated. All of the ligands tested caused the cation to be more susceptible to reduction by harvested whole cells than when uncomplexed, although some complexes were more readily reduced than others. Monitoring rates of reduction by a ferrozine assay for Fe(II) formation proved inadequate using Fe(III) ligands giving Fe(II) complexes of low kinetic lability (e.g. EDTA). A more suitable assay for Fe(III) reduction in the presence of such ligands proved to be the observation of associated cytochrome oxidation and re-reduction. Where possible, an assay for Fe(III) reduction based upon the disappearance of Fe(III) complex was also employed. Reduction of all Fe(III) complexes tested was totally inhibited by the presence of O2, partially inhibited by HQNO and slower in the absence of a physiological electron donor. Upon cell fractionation, Fe(III) reductase activity was detected exclusively in the membranes. Using different physiological electron donors in assays on membranes, relative reduction rates of Fe(III) complexes complemented the data from whole cells. The differences in susceptibility to reduction of the various complexes are discussed, as is evidence for the respiratory nature of the reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号