首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A membrane-bound D-gluconate dehydrogenase [EC 1.1.99.3] was solubilized from membranes of Pseudomonas aeruginosa and purified to a homogeneous state with the aid of detergents. The solubilized enzyme was a monomer in the presence of at least 0.1% Triton X-100, having a molecular weight of 138,000 on polyacrylamide gel electrophoresis or 124,000--131,000 on sucrose density gradient centrifugation. In the absence of Triton X-100, the enzyme became dimeric, having a molecular weight of 240,000--260,000 on sucrose density gradient centrifugation. Removal of Triton X-100 caused a decrease in enzyme activity. Enzyme activity was stimulated by addition of phospholipid, particularly cardiolipin, in the presence of Triton X-100. The enzyme had a cytochrome c1, c-554(551), which might be a diheme cytochrome, and it also contained a covalently bound flavin but not ubiquinone. In the presence of sodium dodecyl sulfate, the enzyme was dissociated into three components with molecular weights of 66,000, 50,000, and 22,000. The components of 66,000 and 50,000 daltons corresponded to a flavoprotein and cytochrome c1, respectively, but that of 22,000 dalton remained unclear as to its function.  相似文献   

2.
D-alanine dehydrogenase, an inducible, membrane associated enzyme of Pseudomonas aeruginosa was solubilized from envelope preparations by treatment with Triton X-100 and purified 31-fold in the presence of 0.05% Triton X-100 to 60% homogeneity. Gel electrophoresis indicated the presence of a single subunit of approximately 49,000 molecular weight. The enzyme contained FAD, and absorption spectra were typical of an iron-sulfur flavoprotein. Solubilization produced significant changes in some properties of the enzyme: solubilized enzyme showed increased affinity for D-alanine; a broader substrate specificity; and increased temperature sensitivity, compared with the membrane associated form.  相似文献   

3.
d-Gluconate dehydrogenase catalyzing the oxidation of d-gluconate to 2-keto-d-gluconate was solubilized with Triton X-100 from the membrane of Gluconobacter dioxyacetonicus IFO 3271 and purified to an almost homogeneous state by chromatographies on DEAE-cellulose and CM-Toyopearl in the presence of 0.1% Triton X-100. The enzyme had three subunits with molecular weights of 64,000, 45,000 and 21,000, and contained approximately 2 mol of heme per mol of the enzyme. The prosthetic group of the dehydrogenase was found to be a flavin covalently bound to the enzyme protein. The substrate specificity of the purified enzyme was very strict for d-gluconate and the apparent Michaelis constant for d-gluconate was 2.2 mm. The optimum pH and temperature of the purified enzyme were 6.0 and 40°C, respectively.  相似文献   

4.
Cytoplasmic membranes were isolated from late-exponential phase Staphylococcus aureus 6538 P and the membrane proteins examined under non-denaturing conditions by thin-layer isoelectric focusing (TLIEF) in a pH 3.5–9.5 gradient. Isolated membrane preparations retained protein integrity as judged by the demostration of membrane bound adenosine triphosphatase (ATPase) activity in addition to four solubilzed membrane enzyme markers. Membranes were effectively solubilized with 2.5% Triton X-100 (final concentration). Examination of Triton X-100 solubilized membrane preparations established the presence of 22 membrane proteins with isoelectric points between 3.7 and 6.0. The focused proteins displayed the following enzymatic activities and isoelectric points by zymogram methods: ATPase (EC 3.6.1.3), 4.20; malate dehydrogenase (EC 1.1.1.37), 3.90; lactate dehydrogenase (EC 1.1.1.27), 3.85; two membrane proteins exhibited multiple bands upon enzymatic staining: NADH dehydrogenase (EC 1.6.99.3), 4.25, 4.35; succinate dehydrogenase (EC 1.3.99.1), 4.85, 5.10, 5.35.  相似文献   

5.
S Leterme  M Boutry 《Plant physiology》1993,102(2):435-443
NADH:ubiquinone reductase (EC 1.6.19.3), or complex I, was isolated from broad bean (Vicia faba L.) mitochondria. Osmotic shock and sequential treatment with 0.2% (v/v) Triton X-100 and 0.5% (w/v) [3-cholamidopropyl)dimethylammonio]-1-propanesulfate (CHAPS) removed all other NADH dehydrogenase activities. Complex I was solubilized in the presence of 4% Triton X-100 and then purified by sucrose-gradient centrifugation in the presence of the same detergent. The second purification step was hydroxylapatite chromatography. Substitution of CHAPS for Triton X-100 helped remove contaminants such as ATPase. The high molecular mass complex is composed of at least 26 subunits with molecular masses ranging from 6000 to 75,000 kD. The purified complex I reduced ferricyanide and ubiquinone analogs but not cytochrome c. NADPH could not substitute for NADH as an electron donor. The KM for NADH was 20 microM at the optimum pH of 8.0. The NH2-terminal sequence of several subunits was determined, revealing the ambiguous nature of the 42-kD subunit.  相似文献   

6.
Spermidine dehydrogenase found in the membrane fraction of Citrohacter freundii IFO 12681 was solubilized with Triton X-100 and further purified to homogeneity. The properties of the membrane enzyme were almost identical to those obtained from the soluble fraction of the organism with respect to molecular and catalytic properties. Thus, binding properties of the enzyme to the bacterial membrane were checked. The ratio of enzyme activity found in the soluble fraction to the membrane fraction was dependent on salt concentration during cell disruption. A hydrophobic interaction was largely involved in anchoring the enzyme to the membrane fraction. Purified spermidine dehydrogenase from the soluble fraction was readily adsorbed into the membrane fraction in the presence of salt. Spermidine dehydrogenase appeared to be a membrane-bound enzyme localized in the cytoplasmic membranes in a manner that makes a partial release of the enzyme possible during mechanical cell disruption. When spermidine oxidation was done with the resting cells of C. freundii, a stoichiometric formation of two reaction products, 1,3-diaminopropane and γ-aminobutyraldeyde, was observed without any lag time. These facts indicate that the enzyme is localized on the outer surface of the cytoplasmic membranes or in the periplasmic space of the organism.  相似文献   

7.
Two different NAD(P)H dehydrogenases could be demonstrated in the blue-green alga, Aphanocapsa. Both function as quinone reductases using benzoquinone as electron acceptor. One, which was found in the soluble fraction, was NADH specific and showed high sensitivity to rotenone, thenoyltrifluoroacetone and o-phenanthroline. The second dehydrogenase was membrane-bound and used NADH as well as NADPH as substrates. Inhibition by rotenone and o-phenanthroline was less pronounced with the bound enzyme than with the soluble enzyme. Based on studies with NADH or NADPH, the membrane-bound enzyme apparently was associated with a low-temperature EPR signal at g=1.92 in the reduced state, indicative of an iron-sulfur center. The membrane-bound dehydrogenase was solubilized with Triton X-100 and partially purified. This preparation was used for studies of enzyme kinetics and acceptor specificity.Abbreviations DBMIB 2,5-dibromo methyl isopropylbenzoquinone - TTFA thenoyltrifluoroacetone - E m midpoint redox potential  相似文献   

8.
Particulate alcohol dehydrogenase of acetic acid bacteria that is mainly participated in vinegar fermentation was purified to homogeneous state from Gluconobacter suboxydans IFO 12528. Solubilization of enzyme from the bacterial membrane fraction by Triton X-100 and subsequent fractionation on DEAE-Sephadex A-50 and hydroxylapatite was successful in enzyme purification. A cytochrome c-like component was tightly bound to the dehydrogenase protein and existed as an enzyme-cytochrome complex. It was also confirmed that the alcohol dehydrogenase is not a cytochrome component itself. The molecular weight of the enzyme was determined to be 150,000, and gel electrophoresis showed the presence of three subunits having a molecular weight of 85,000, 49,000 and 14,400. The smallest subunit was corresponded to the cytochrome c-like component. Ethanol was oxidized in the presence of dyes in vitro but NAD or NADP were not required as hydrogen acceptor. Unlike NAD- linked alcohol dehydrogenase in yeast or liver and other primary alcohol dehydrogenases in methanol utilizing bacteria, the enzyme from the acetic acid bacteria showed its optimum pH at fairly acidic pH.  相似文献   

9.
On addition of low concentrations (0.005%) of Triton X-100 to a mineral medium supplemented with 0.5% heptadecane, a marked stimulation of growth rate was observed for Acinetobacter calcoaceticus strains able to grow on alkanes while appreciable amounts of soluble quinoprotein d-glucose dehydrogenase [d-glucose: (pyrroloquinoline-quinone) 1-oxidoreductase, EC 1.1.99.17] were found in the culture medium. At higher Triton X-100 concentrations (0.04%), still larger amounts of d-glucose dehydrogenase and also cytoplasmic enzyme activities appeared in the culture medium. Although combinations of other carbon sources plus non-ionic detergents also produced these enzymes in the medium, the combination of heptadecane and Triton X-100 gave higher levels and had a stabilizing effect on d-glucose dehydrogenase. Therefore, by using this combination and culturing within certain pH limits, a stable enzyme solution, having already a high specific activity, is produced while the cell harvesting and disruption steps can be circumvented. The results indicate that d-glucose dehydrogenase in this organism is a periplasmic enzyme, coupled to a cytochrome b.  相似文献   

10.
The distribution of acyl-CoA synthetase was investigated among microorganisms. High enzyme activity was found in some strains in genera of Pseudomonas, Fusarium, Gibberella and Cylindrocarpon, and in many strains of basidiomycetes. There were two groups in respect to enzyme formation. The enzyme activities of Escherichia, Klebsiella, Enterobacter, Citrobacter and Serratia were detected only when they were grown with fatty acids as the carbon source. On the other hand, the activities of many fungal strains and pseudomonads were easily detected regardless of the carbon source for growth.

Gel filtration on Sephadex G-200 showed that the enzymes of Escherichia coli and Gibberella fujikuroi were mostly present around the void volume of the column and retarded by the gel after treatment with Triton X-100. Pseudomonas aeruginosa produced two kinds of enzymes, one was eluted around the void volume of the column and the other retarded by the gel. This elution pattern did not change upon treatment with Triton X-100. Some catalytic properties of acyl-CoA synthetases from P. aeruginosa and G. fujikuroi were also described.  相似文献   

11.
The effects of an extracellular microbial glycolipid, the interfacial active lactonic sophoroselipid, and of Triton X-100 on strains of Acinetobacter calcoaceticus are compared. Sophoroselipid diminished growth rates on n-heptadecane. Both surfactants led to the excretion of enzyme activities into the culture medium. Sophoroselipid increased the release of cytoplasmic malate dehydrogenase whereas in presence of Triton X-100 the quinoprotein glucose dehydrogenase was also excreted in large amounts.  相似文献   

12.
Human spleen dihydroorotate dehydrogenase is associated with the mitochondrial membrane and is linked to the respiratory chain via ubiquinone. The enzyme activity was unaffected by pyridine nucleotides. The product of the reaction, orotate, was a potent inhibitor. However, a range of other naturally occurring pyrimidines or purines had no significant effect on the activity. No evidence for the involvement of a complexed metal ion or for an active sulfhydryl group was obtained. Purification of the enzyme was achieved by preparation of an acetone powder and extraction with Triton X-100, followed by preparative polyacrylamide gel electrophoresis. Activity was observed by the addition of the artificial electron acceptors, ubiquinone 50 or PMS. Purification resulted in alteration of the pH optimum and of other kinetic characteristics. Two molecular-weight species, of molecular weight 88,000 and 98,000, were consistently observed. The properties of the human spleen enzyme were similar in principle to those for the rat liver enzyme. Differences in the mode of linkage to the respiratory chain for the mitochondrially bound enzyme, and in the characteristics of the purified enzyme, were observed.  相似文献   

13.
The effects of solubilization with Triton X-100 or Brij 58 on the polypeptide composition and the substrate affinity of the tonoplast H+-ATPase of plants of Mesembryanthemum crystallinum performing C3 photosynthesis or crassulacean acid metabolism (CAM) have been compared. Although all known subunits of the tonoplast H+-ATPase were present in the fraction of solubilized proteins after treatment with Brij 58 or Triton X-100, with Triton X-100 the apparent KM value for ATP hydrolysis was increased by a factor of 1.8 and 1.5 in preparations from C3 and CAM plants, respectively, even at low concentrations in contrast to treatment with Brij 58. This is explained by structural changes of the tonoplast H+-ATPase due to the Triton X-100 treatment. After solubilization with Brij 58 the tonoplast H+-ATPase was partially purified by Superose-6 size-exclusion FPLC. When Brij 58 was present, addition of lipids to the chromatography buffer was not necessary to conserve enzyme activity in contrast to previously described purification methods using Triton X-100. The substrate affinity of the partial purified H+-ATPase was similar to the substrate affinity obtained for ATP-hydrolysis of native tonoplast vesicles, indicating that the enzyme structure during partial purification was conserved by using Brij 58. The results underline that the lipid environment of the tonoplast H+-ATPase is important for enzyme structure and function.  相似文献   

14.
Summary Plasma membranes were isolated and purified from 14-day-old maize roots (Zea mays L.) by two-phase partitioning at a 6.5% polymer concentration, and compared to isolated mitochondria, microsomes, and soluble fraction. Marker enzyme analysis demonstrated that the plasma membranes were devoid of cytoplasmic, mitochondrial, tonoplast, and endoplasmic-reticulum contaminations. Isolated plasma membranes exhibited malate dehydrogenase activity, catalyzing NADH-dependent reduction of oxaloacetate as well as NAD+-dependent malate oxidation. Malate dehydrogenase activity was resistant to osmotic shock, freeze-thaw treatment, and salt washing and stimulated by solubilization with Triton X-100, indicating that the enzyme is tightly bound to the plasma membrane. Malate dehydrogenase activity was highly specific to NAD+ and NADH. The enzyme exhibited a high degree of latency in both right-side-out (80%) and inside-out (70%) vesicle preparations. Kinetic and regulatory properties with ATP and Pi, as well as pH dependence of plasma-membrane-bound malate dehydrogenase were different from mitochondrial and soluble malate dehydrogenases. Starch gel electrophoresis revealed a characteristic isozyme form present in the plasma membrane isolate, but not present in the soluble, mitochondrial, and microsomal fractions. The results presented show that purified plasma membranes isolated from maize roots contain a tightly associated malate dehydrogenase, having properties different from mitochondrial and soluble malate dehydrogenases.Abbreviations FCR ferricyanide reductase - MDH malate dehydrogenase  相似文献   

15.
The properties of Ca2+-ATPase purified and reconstituted from bovine pulmonary artery smooth muscle microsomes {enriched with endoplasmic reticulum (ER)} were studied using the detergents 1,2-diheptanoyl-sn-phosphatidylcholine (DHPC), poly(oxy-ethylene)8-lauryl ether (C12E8) and Triton X-100 as the solubilizing agents. Solubilization with DHPC consistently gave higher yields of purified Ca2+-ATPase with a greater specific activity than solubilization with C12E8 or Triton X-100. DHPC was determined to be superior to C12E8; while that the C12E8 was determined to be better than Triton X-100 in active enzyme yields and specific activity. DHPC solubilized and purified Ca2+-ATPase retained the E1Ca−E1*Ca conformational transition as that observed for native microsomes; whereas the C12E8 and Triton X-100 solubilized preparations did not fully retain this transition. The coupling of Ca2+ transported to ATP hydrolyzed in the DHPC purified enzyme reconstituted in liposomes was similar to that of the native micosomes, whereas that the coupling was much lower for the C12E8 and Triton X-100 purified enzyme reconstituted in liposomes. The specific activity of Ca2+-ATPase reconstituted into dioleoyl-phosphatidylcholine (DOPC) vesicles with DHPC was 2.5-fold and 3-fold greater than that achieved with C12E8 and Triton X-100, respectively. Addition of the protonophore, FCCP caused a marked increase in Ca2+ uptake in the reconstituted proteoliposomes compared with the untreated liposomes. Circular dichroism analysis of the three detergents solubilized and purified enzyme preparations showed that the increased negative ellipticity at 223 nm is well correlated with decreased specific activity. It, therefore, appears that the DHPC purified Ca2+-ATPase retained more organized and native secondary conformation compared to C12E8 and Triton X-100 solubilized and purified preparations. The size distribution of the reconstituted liposomes measured by quasi-elastic light scattering indicated that DHPC preparation has nearly similar size to that of the native microsomal vesicles whereas C12E8 and Triton X-100 preparations have to some extent smaller size. These studies suggest that the Ca2+-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C12E8 and Triton X-100 in many ways, which is suitable for detailed studies on the mechanism of ion transport and the role of protein–lipid interactions in the function of the membrane-bound enzyme.  相似文献   

16.
L-3-Glycerophosphate dehydrogenase (EC 1.1.99.5) was purified from pig brain mitochondria by extraction with deoxycholate, ion-exchange chromatography and (NH4)2SO4 fractionation in cholate, and preparative isoelectric focusing in Triton X-100. Sodium dodecyl sulphate/polyacrylamide gel electrophoresis shows that the purified enzyme consists of a single subunit of mol.wt. 75 000. The enzyme contains non-covalently bound FAD and low concentrations of iron and acid labile sulphide. No substrate reducible e.p.r. signals were detected. The conditions of purification, particularly the isoelectric focusing step, lead to considerable loss of FAD and possibly iron-sulphur centres. It is therefore not possible to decide with certainty whether the enzyme is a flavoprotein or a ferroflavoprotein. The enzyme catalyses the oxidation of L-3-glycerophosphate by a variety of electron acceptors, including ubiquinone analogues. A number if compounds known to inhibit ubiquinone oxidoreduction by other enzymes of the respiratory chain failed to inhibit L-3-glycerophosphate dehydrogenase, except at very high concentrations.  相似文献   

17.
Summary The effects of various chemical substances on the permeability of plasma membranes and tonoplasts of three suspension cultures (Catharanthus roseus, Thalictrum rugosum and Chenopodium rubrum) have been studied. The permeability of the plasma membrane is monitored by measuring the activity of the cytosolic enzyme isocitrate dehydrogenase and the permeability of the tonoplast is measured by determining the release of substances stored in the vacuoles (inorganic phosphate, berberine and betanin for the three cell lines, respectively). The minimum concentration required for quantitative release of vacuolar products have been established for five different permeabilization agents. Cell viability is lost upon permeabilization except for treatment of Catharanthus roseus with DMSO and Triton X-100.Abbreviations DMSO dimethylsulfoxide - PEA phenethylalcohol - HDTMAB hexadecyltrimethylammonium bromide - ICDH isocitrate dehydrogenase  相似文献   

18.
Pseudomonas pseudoalcaligenes can only form d-malate from maleate after incubation of the cells with a solvent or a detergent. The effect of the detergent Triton X-100 on d-malate production was studied in more detail. The longer the cells were incubated with Triton X-100, the higher was the d-malate production activity, until the maximal malease activity was reached. Incubation of P. pseudoalcaligenes cells with Triton X-100 also resulted in an increase in the protein concentration of the supernatant, indicating that cell lysis had occurred. The rate at which the d-malate production activity increased was dependent on the Triton X-100 concentration and on the cell density. Also the rate at which lysis occurred depended on the Triton X-100 concentration.  相似文献   

19.
Membrane-bound NADP-independent formaldehyde-oxidizing enzyme was purified to homogeneity from the membrane of Acetobacter sp. SKU 14 isolated in Thailand. The enzyme was solubilized from the membrane fraction of glycerol-grown cells with 1% Tween 20 at pH 2.85, and purified to homogeneity through the steps of column chromatographies on DEAE-Sephadex A-50 and Q-Sepharose in the presence of 0.1% Tween 20 and 0.1% Triton X-100. The enzyme purified together with a cytochrome c showed a single protein band on native-PAGE, and was dissociated into three different subunits upon SDS-PAGE with molecular masses of 78 kDa, 55 kDa, and 18 kDa. The purified enzyme was finally characterized as a quinoprotein alcohol dehydrogenase (QADH), and this is the first indication that QADH highly oxidizes formaldehyde. The substrate specificity of the enzyme was found to be broad toward aldehydes and alcohols, and alcohols, especially n-butanol, n-propanol, and ethanol, were oxidized more rapidly than formaldehyde.  相似文献   

20.
Membrane-bound, pyrroloquinoline quinone-dependent, alcohol dehydrogenase functions as the primary dehydrogenase in the respiratory chain of acetic acid bacteria. In this study, an ability of the enzyme to directly react with ubiquinone was investigated in alcohol dehydrogenases purified from both Acetobacter aceti and Gluconobacter suboxydans by two different approaches. First, it was shown that the enzymes are able to reduce natural ubiquinones, ubiquinone-9 or -t0, in a detergent solution as well as a soluble short-chain homologue, ubiquinone-I. In order to show the reactivity of the enzyme with natural ubiquinone in a native membrane environment, furthermore, alcohol dehydrogenase was reconstituted into proteoliposomes together with natural ubiquinone and a terminal ubiquinol oxidase. The reconstitution was done by binding the detergent-free dehydrogenase at room temperature to proteoliposomes that had been prepared in advance from a ubiquinol oxidase and phospholipids containing ubiquinone by detergent dialysis using octyl-β-D-glucopyranoside; the enzyme of A. aceti was reconstituted together with ubiquinone-9 and A. aceti cytochrome a1 while G. suboxydans alcohol dehydrogenase was done into proteoliposomes containing ubiquinone-10 and G. suboxydans cytochrome o. The proteoliposomes thus reconstituted had a reasonable level of ethanol oxidase activity, the electron transfer reaction of which was also able to generate a ‘membrane potential. Thus, it has been shown that alcohol dehydrogenase of acetic acid bacteria donates electrons directly to ubiquinone in the cytoplasmic membranes and thus the ethanol oxidase respiratory chain of acetic acid bacteria is constituted of only three membranous respiratory components, alcohol dehydrogenase, ubiquinone, and terminal ubiquinol oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号