首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the hydrolyzed product (F-2) with a molecular mass of about 2 kDa released from γ-polyglutamic acid by the γ-glutamyl hydrolase YwtD of Bacillus subtilis was analyzed. The results showed that F-2 is an optically heterogeneous polymer consisting of D- and L-glutamic acid in an 80:20 ratio with D-glutamic acid on both the N- and C-terminal sides, suggesting that YwtD is an enzyme that cleaves the γ-glutamyl bond between D- and D-glutamic acid recognizing adjacent L-glutamic acid toward the N-terminal region.  相似文献   

2.
Syntheses of various γ-glutamylpeptides were examined taking use of the highly purified γ-glutamylcysteine synthetase from Proteus mirabilis. The accumulation of each peptide was measured after long time incubation, and good formation was observed in the synthesis of peptides of following amino acids, l-cysteine, l-α-aminobutyrate, l-serine, l-homoserine, glycine, l-alanine, l-norvaline, l-lysine, l-threonine, taurine and l-valine. Peptide syntheses were confirmed by analyses of the component amino acids, after hydrolysis of the peptides.

The structure of the glutamylpeptides, especially the peptide-linkage at the γ-carbonyl residue of l-glutamate, was determined by mass spectrometry of the N-trifluoroacetyl methylester derivatives of the glutamylpeptides. Enzymatic synthesis of γ-glutamyl-l-α-aminobutyrate was also confirmed by PMR spectrometry in the comparison with chemically synthesized compound.  相似文献   

3.
The influence of tea catechins on the absorption of starch or sucrose was investigated in vivo. Tea catechins were administered orally to rats before soluble starch or sucrose administration. Saccharide-dosed rats were killed and the blood and the contents of the intestine were collected at intervals over two hours. Catechins of certain concentrations suppressed the increase of plasma glucose levels, thus concurrently suppressing insulin activity. Increased activity of intestinal α-amylase by starch dosing was inhibited markedly in the catechin-administered rats. Sucrase on the brush border membrane was also inhibited by prior catechin administration. From these results it was assumed that orally administered catechins will inhibit intestinal α-amylase or sucrase, thereby deterring the digestion of certain amounts of starch or sucrose and eventually reducing the plasma glucose levels.  相似文献   

4.
An exocellular γ-glutamyl arylamide-hydrolyzing enzyme was produced by a Bacillus sp. in L-glutamate-containing medium. This enzyme was a tetrameric simple protein composed of two heavy subunits (Mr 56,000) and two light subunits (Mr 46,000). It hydrolyzed γ-amido, acyl and aryl bonds in L- and D-glutamyl compounds, and the activity on L-glutamic acid γ-p-nitroanilide was inhibited by the addition of glutamate and γ-glutamyl compounds but not by α-glutamyl compounds. The activity was stimulated by various dipeptides but not by free amino acids, L-Alanine, glycine, L-serine and L-cysteine inhibited the enzyme competitively. Addition of hy-droxylamine had no effect on the activity.  相似文献   

5.
A transfer reaction catalyzed by an exo-β-1,4-galactanase from Bacillus subtilis was studied. The enzyme had a broad acceptor specificity and transferred galactobiosyl residues to acceptors such as various alcohols, including hydroxy benzenes and saccharides. Transfer products of glycerol formed by the enzyme were compared with those formed by Escherichia coli β-galactosidase and by Penicillium citrinum endo-galactanase. E. coli enzyme transferred 90% of galactose residues to the primary hydroxyl groups of glycerol and P. citrinum endo-enzyme transferred 80% of saccharide residues to the secondary hydroxyl group. The B. subtilis exo-galactanase was less specific than the other two enzymes and formed two products (1-DG and 2-DG) with a 2-DG/l-DG ratio of about 2. The structures of the saccharides were examined by 13C-nuclear magnetic resonance analysis and by enzymatic hydrolysis. 1-DG and 2-DG were elucidated to be O-β-d-galactosyl-(l→4)-O-β-d-galactosyl-(1→1)-glycerol and O-β-d-galactosyl-(l→4)-O-β-d-galactosyl-(l→2)-glycerol, respectively. The efficiency of the transfer reaction was measured at various concentrations of glycerol using galactotriose as a donor. About 40–75% of galactobiosyl residues were transferred at an acceptor concentration range of 20–100 mg/ml.  相似文献   

6.
Summary The -glutamyltranspeptidase (-GTP) gene of Bacillus subtilis (natto) plasmid designated pUH1, which is responsible for polyglutamate production, has been cloned and the nucleotide sequence determined. The sequence contains a single open-reading frame stretching for 1260 bp with a relative molecular mass of 49356. Putative -35 and -10 sequences, TTCAAA and TATTAT, were observed as the consensus sequence for the promoter recognized by the 43 RNA polymerase of B. subtilis, and the ribosome binding site, the sequence of which was AACGAG, was complementary to the binding sequence of B. subtilis 16S rRNA except for one base. The amino acid sequence of the gene with the segment of putative protein C403 of staphylococcal plasmid pE194 indicates homology, whereas that with Escherichia coli and mammalian -GTPs does not show any similarity at all.  相似文献   

7.
The ggt encoding γ-glutamyltranspeptidase (GGT) from Bacillus subtilis (natto) was cloned and sequenced. The DNA sequence contains a single open reading frame of 1761 bp that might be translated to a protein of 587 amino acid residues, and indicates that B. subtilis (natto) GGT is synthesized as prepro-GGT and processed later into large and small subunits. The putative catabolite responsive element (CRE) was located upstream of the ggt coding region.  相似文献   

8.
The cell surface glycoprotein γ-glutamyl transpeptidase (GGT) was isolated from healthy human kidney and liver to characterize its glycosylation in normal human tissue in vivo. GGT is expressed by a single cell type in the kidney. The spectrum of N-glycans released from kidney GGT constituted a subset of the N-glycans identified from renal membrane glycoproteins. Recent advances in mass spectrometry enabled us to identify the microheterogeneity and relative abundance of glycans on specific glycopeptides and revealed a broader spectrum of glycans than was observed among glycans enzymatically released from isolated GGT. A total of 36 glycan compositions, with 40 unique structures, were identified by site-specific glycan analysis. Up to 15 different glycans were observed at a single site, with site-specific variation in glycan composition. N-Glycans released from liver membrane glycoproteins included many glycans also identified in the kidney. However, analysis of hepatic GGT glycopeptides revealed 11 glycan compositions, with 12 unique structures, none of which were observed on kidney GGT. No variation in glycosylation was observed among multiple kidney and liver donors. Two glycosylation sites on renal GGT were modified exclusively by neutral glycans. In silico modeling of GGT predicts that these two glycans are located in clefts on the surface of the protein facing the cell membrane, and their synthesis may be subject to steric constraints. This is the first analysis at the level of individual glycopeptides of a human glycoprotein produced by two different tissues in vivo and provides novel insights into tissue-specific and site-specific glycosylation in normal human tissues.  相似文献   

9.
Glycosylation of various phenols with -D-glucosaminyl chloride peracetate in a solid phase–liquid system catalyzed by crown compounds was studied. The highest yields of aryl -glycosides were observed at room temperature in acetonitrile using anhydrous potassium carbonate as a base. The optimum phenol–glycosyl donor–base–crown ether ratio was 1 : 1 : 1 : 0.2.  相似文献   

10.
In the practical application of Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT), we describe a straightforward enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine (GSAC), a naturally occurring organosulfur compound found in garlic, based on a transpeptidation reaction involving glutamine as the γ-glutamyl donor and S-allyl-L-cysteine as the acceptor. With the help of thin layer chromatography technique and computer-assisted image analysis, we performed the quantitative determination of GSAC. The optimum conditions for a biocatalyzed synthesis of GSAC were 200 mM glutamine, 200 mM S-allyl-L-cysteine, 50 mM Tris–HCl buffer (pH 9.0), and BlGGT at a final concentration of 1.0 U/mL. After a 15-h incubation of the reaction mixture at 60 °C, the GSAC yield for the free and immobilized enzymes was 19.3% and 18.3%, respectively. The enzymatic synthesis of GSAC was repeated under optimal conditions at 1-mmol preparative level. The reaction products together with the commercially available GSAC were further subjected to an ESI-MS/MS analysis. A significant signal with m/z of 291.1 and the protonated fragments at m/z of 73.0, 130.1, 145.0, and 162.1 were observed in the positive ESI-MS/MS spectrum, which is consistent with those of the standard compound. These results confirm the successful synthesis of GSAC from glutamine and S-allyl-L-cysteine by BlGGT.  相似文献   

11.
L-Methionine γ-lyase (EC 4.4.1.11) catalyzes α,γ-elimination of O-substituted L-homoserines (i.e., ROCH2CH2CH(NH2)COOH; R = acetyl, succinyl, or ethyl) to produce α-ketobutyrate, ammonia, and the corresponding carboxylate or alcohol, and also their γ-replacement reactions with various thiols to produce the corresponding S-substituted L-homocysteines. The reactivities of O-substituted L-homoserines in α,γ-elimination relative to that of L-methionine were as follows: O-acetyl, 140%; O-succinyl, 17%; and O-ethyl-L-homoserine, 99%. However, the enzyme does not catalyze the synthesis of O-substituted L-homoserines from alcohol or carboxylic acids in a γ-replacement reaction. We have analyzed the α,γ-elimination of O-acetyl-L-homoserine in deuterium oxide by 1H-NMR. The [β-2H, γ-2H]-species of α-ketobutyrate was exclusively formed from O-acetyl-L-homoserine. The enzyme catalyzes deamination of L-vinylglycine to give the identically labeled α-ketobutyrate species. Incubation of the enzyme with O-acetyl-L-homoserine resulted in the appearance of a new absorption band at 480 nm, which was observed also with L-vinylglycine. These results strongly suggest that the α,γ-elimination and γ-replacement reactions of O-acetyl-L-homoserine proceed through the stabilized α-carbanion of a Schiff base between pyridoxal 5'-phosphate and vinylglycine, which has been suggested as the key intermediate of L-methionine γ-lyase-caralyzed reactions of S-substituted L-homocysteines [N. Esaki, T. Suzuki, H. Tanaka, K. Soda and R. R. Rando, FEBS Lett., 84, 309 (1977).  相似文献   

12.
Corvo MC  Pereira MM 《Amino acids》2007,32(2):243-246
Summary. New γ-amino esters and amides were prepared by a radical 1,4-addition of carbon radicals to acrylic derivatives. α-Amino acids derivatives holding chiral auxiliaries as radical precursors and different chiral olefins were used and chiral induction on the C-γ center was discussed.  相似文献   

13.
Gamma glutamyl transpeptidase from Bacillus pumilus KS12 (GGTBP) was cloned, expressed in pET-28-E. coli expression system as a heterodimeric enzyme with molecular weights of 45 and 20 kDa for large and small subunit, respectively. It was purified by nickel affinity chromatography with hydrolytic and transpeptidase activity of 1.82 U/mg and 4.35 U/mg, respectively. Sequence analysis revealed that GGTBP was most closely related to Bacillus licheniformis GGT and had all the catalytic residues and nucleophiles for autoprocessing recognized from E. coli. It was optimally active at pH 8 and 60°C. It exhibited pH stability from pH 6-9 and high thermostability with t(1/2) of 15 min at 70°C. It had K(m), V(max) of 0.045 mM, 4.35 μmol/mg/min, respectively. Decoupling of autoprocessing by co-expressing large and small subunit in pET-Duet1-E. coli expression system yielded active enzyme with transpeptidase activity of 5.31 U/mg. Though N-terminal truncations of rGGTBP upto 95 aa did not affect autoprocessing of GGT however activity was lost with truncation beyond 63 aa.  相似文献   

14.
1. Experiments were carried out to determine the extent of dissociation of histone from deoxyribonucleohistone as a result of irradiation with γ-rays from 60Co. 2. The bulk of the nucleohistone was removed from the irradiated solutions either by sedimentation or by precipitation with dilute sodium chloride solution. The supernatants were then analysed for DNA and histone. 3. The ratios of histone to DNA in these supernatants were less than for the original nucleohistone. This indicated that histone was dissociated by the irradiation, and then aggregated either with itself or with other nucleohistone molecules, and so was removed with the bulk of the nucleohistone during sedimentation or precipitation.  相似文献   

15.
Two isozymes of γ-glutamyltranspeptidase, GGT-A and GGT-B, were purified to electrophoretic homogeneity from a culture broth of Bacillus subtilis TAM-4, which produces poly(γ-glutamic acid) (PGA) de novo. GGT-A was composed of three subunits with molecular weights of 23,000 (I), 39,000 (II), and 40,000 (III). GGT-B was composed of two subunits with molecular weights of 22,000 (I) and 39,000 (II). The N-terminal amino acid sequences of GGT-A subunit I and GGT-B subunit I were very similar. GGT-A subunit II and GGT-B subunit II had an identical N-terminal amino acid sequence. That of GGT-A subunit III showed no similarity to the other subunits. Both GGTs had similar enzymatic properties (optimum pH and temperature: pH 8.8 and 55°C) but showed a significantly different thermal stability at 55°C. Both GGT-A and -B used d-γ-glutamyl-p-nitroanilide as well as the l-isomer as the γ-glutamyl donor and used various amino acids and peptides as the acceptor. It was also found that the PGA produced by the strain was hydrolyzed to glutamic acid by its own GGTs.  相似文献   

16.
A basic possibility of enzymic synthesis of alkyl glycosides in a system of the Aerosol-OT (AOT) reverse micelles was studied. Octyl -D-galactopyranoside and octyl -D-glucopyranoside were synthesized from the corresponding sugars (lactose or glucose) and octyl alcohol under catalysis with glycolytic enzymes, -galactosidase and -glucosidase, respectively. The transglycosylation/hydrolysis ratio was shifted toward transglycosylation by using octyl alcohol, one of the substrates, as an organic solvent. The alkyl glycosides were thus obtained in one step from a hydrophilic mono- or disaccharide and a hydrophobic aliphatic alcohol. The direction of the reaction was shown to depend on the pH of aqueous solution solubilized in reverse micelles. The maximum yields were 45% and 40% for octyl galactoside and octyl glucoside, respectively; they markedly exceeded the yields of enzymic syntheses in a two-phase system reported previously.  相似文献   

17.
The preparation of γ-polyglutamic acid (γ-PGA) from Bacillus subtilis NX-2 has been previously investigated, and its depolymerization during the batch culture was studied in this paper. The results suggested that the γ-PGA depolymerase was present and active extracellularly in the culture. The ywtD gene from B. subtilis NX-2, encoding the γ-PGA depolymerase was cloned and expressed in Escherichia coli. The YwtD protein was purified by metal-chelating affinity chromatography. YwtD was proved to be an endo-hydrolase enzyme and exhibited a remarkable activity in γ-PGA degradation at a wide range of temperature (30–40 °C) and pH (5.0–8.0). On an optimal condition of 30 °C and pH 5.0, an efficient γ-PGA enzymatic degradation was achieved. The molecular weight of γ-PGA could be reduced within the range of 1000–20 kDa and the polydispersity also decreased as a function of depolymerization time. Therefore, a controllable degradation of γ-PGA could be available by enzymatic depolymerization.  相似文献   

18.
γ-Glutamyl kinase (GK) is the rate-limiting enzyme in proline synthesis in microorganisms. Most microbial GKs contain an N-terminal kinase domain and a C-terminal pseudouridine synthase and archaeosine transglycosylase (PUA) domain. In contrast, higher eukaryotes possess a bifunctional Δ1-pyrroline-5-carboxylate synthetase, which consists of a PUA-free GK domain and a γ-glutamyl phosphate reductase (GPR) domain. Here, to examine the role of the C-terminal region, including the PUA domain of Saccharomyces cerevisiae GK, we constructed a variety of truncated yeast GK and GK/GPR fusion proteins from which the C-terminal region was deleted. A complementation test in Escherichia coli and S. cerevisiae and enzymatic analysis of recombinant proteins revealed that a 67-residue linker sequence between a 255-residue kinase domain and a 106-residue PUA domain is essential for GK activity. It also appeared that 67 or more residues of the C-terminal region, not the PUA domain itself, are required for the full display of GK activity. Further, the GK/GPR fusion protein was functional in E. coli, but decreased stability and Mg-binding ability as compared to wild-type GK. These results suggest that the C-terminal region of S. cerevisiae GK is involved in the folding and/or the stability of the kinase domain.  相似文献   

19.
20.
An α-amylase which produces maltohexaose as the main product from strach was found in the culture filtrate of Bacillus circulans G-6 which was isolated from soil and identified by the author.

The enzyme was purified by means of ammonium sulfate fractionation, DEAE-Sepharose column chromatography and Sephadex G-200 column chromatography. The purified enzyme was homogeneous on disc electrophoresis. The optimum pH and temperature of the enzyme were around pH 8.0 and around 60°C, respectively. The enzyme was stable in the range of pH 5–10. Metal ions such as Hg2+, Cu2+, Zn2+, Fe2+ and Co2+ inhibited the enzyme activity. The molecular weight was about 76,000. The yield of maltohexaose from soluble starch of DE (dextrose equivalent*) 1.8-12.6 was about 30%, and the combined action of the enzyme and pullulanase or isoamylase increased the yield of maltohexaose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号