首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of 2-cis-α-ionylidene-ethanol (II) with active MnO2 afforded a mixture of 2-cis and 2-trans-α-ionylideneacetaldehydes (III and IV). Reduction of methyl epoxy-α- and -β-ionylideneacetates (Vb, Xb XXIb and XXIIb) with LiAlH4 gave the diols (VI, XI, XXIII and XXIV). The Wittig reaction of the hydroxyketones (XIII and XVIII) with carbethoxymethylenetriphenylphosphorane, followed by alkaline hydrolysis, yielded 5-(1′-and 2′-hydroxy-2′,6′,6′-trimethyl-1′-cyclohexyl)-3-methylpentadienoic acids (XIVa, XVa, XIXa and XXa). The reaction of α-cyclocitrylideneacetaldehyde (XXVII) and dihydro-α-ionone (XXXIII) with carbethoxymethylenetriphenylphosphorane afforded ethyl 3-demethyl-α-ionyli-deneacetate (XXVIIIb) and ethyl dihydro-α-ionylideneacetates (XXXIVb and XXXVb). Physiological activities of the above synthesized compounds on rice seedlings were examined.  相似文献   

2.
Several ionones and β-ionylideneacetic acids inhibited absicisic acid (ABA) biosynthesis in Cercospora rosicola at 100 μm. At lower concentrations, α-ionone, 1′,2′-dihydroxy-l′,2′-dihydro-β-ionone and 4′-keto-α-ionone enhanced ABA biosynthesis. Conversions of ionones by C. rosicola were identified by GC-MS as: α-ionone to 4′-keto-α-ionone, 4′-keto-α-ionol and dehydrovomifoliol; and 1′-hydroxy-α-ionone to dehydrovomifoliol. The oxidations of α-ionone and its analogs parallel those of the α-ionylideneacetic acids. The β-ionylideneacetic acids were generally oxidized to more polar forms. Metabolites identified by GC-MS were 3′-hydroxy-, 3′-keto- and 1′,2′-epoxy-1′,2′-dihydro-β-ionylideneacetic acids. The fungus rapidly metabolized most exogenous materials to more polar forms.  相似文献   

3.
Xanthophyll carotenoids, such as lutein, zeaxanthin and β-cryptoxanthin, may provide potential health benefits against chronic and degenerative diseases. Investigating pathways of xanthophyll metabolism are important to understanding their biological functions. Carotene-15,15′-monooxygenase (CMO1) has been shown to be involved in vitamin A formation, while recent studies suggest that carotene-9′,10′-monooxygenase (CMO2) may have a broader substrate specificity than previously recognized. In this in vitro study, we investigated baculovirus-generated recombinant ferret CMO2 cleavage activity towards the carotenoid substrates zeaxanthin, lutein and β-cryptoxanthin. Utilizing HPLC, LC–MS and GC–MS, we identified both volatile and non-volatile apo-carotenoid products including 3-OH-β-ionone, 3-OH-α-ionone, β-ionone, 3-OH-α-apo-10′-carotenal, 3-OH-β-apo-10′-carotenal, and β-apo-10′-carotenal, indicating cleavage at both the 9,10 and 9′,10′ carbon–carbon double bond. Enzyme kinetic analysis indicated the xanthophylls zeaxanthin and lutein are preferentially cleaved over β-cryptoxanthin, indicating a key role of CMO2 in non-provitamin A carotenoid metabolism. Furthermore, incubation of 3-OH-β-apo-10′-carotenal with CMO2 lysate resulted in the formation of 3-OH-β-ionone. In the presence of NAD+, in vitro incubation of 3-OH-β-apo-10′-carotenal with ferret hepatic homogenates formed 3-OH-β-apo-10′-carotenoic acid. Since apo-carotenoids serve as important signaling molecules in a variety of biological processes, enzymatic cleavage of xanthophylls by mammalian CMO2 represents a new avenue of research regarding vertebrate carotenoid metabolism and biological function.  相似文献   

4.
One of the major challenges in chemical synthesis is the selective oxyfunctionalization of non-activated C-H bonds, which can be enabled by biocatalysis using cytochrome P450 monooxygenases. In this study, we report on the characterization of the versatile CYP109Q5 from Chondromyces apiculatus DSM436, which is able to functionalize a wide range of substrates (terpenes, steroids and drugs), including the ring of β-ionone in non-allylic positions. The crystal structure of CYP109Q5 revealed flexibility within the active site pocket that permitted the accommodation of bulky substrates, and enabled a structure-guided approach to engineering the enzyme. Some variants of CYP109Q5 displayed a switch in selectivity towards the non-allylic positions of β-ionone, allowing the simultaneous production of 2- and 3-hydroxy-β-ionone, which are chemically challenging to synthesize and are important precursors for carotenoid synthesis. An efficient whole-cell system finally enabled the production of up to 0.5 g l−1 hydroxylated products of β-ionone; this system can be applied to product identification in further biotransformations. Overall, CYP109Q5 proved to be highly evolvable and active. The studies in this work demonstrate that, using rational mutagenesis, the highly versatile CYP109Q5 generalist can be progressively evolved to be an industrially valuable specialist for the synthesis of specific products.  相似文献   

5.
Abstract

Regioselective 2′-O-deacetylation of 9-(2,5-di-O-acetyl-3-bromo-3-deoxy-β-D-xylofuranosyl)adenine (1) is achieved by treatment of 1 with β-cyclodextrin (β-CyD) / aq. NaHCO3 or N2H4·H2O / EtOH. The 9-(5-O-Acetyl-3-bromo-3-deoxy-β-D-xylo-furanosyl)adenine (2) obtained is a common intermediate for the synthesis of 2′,3′-dideoxy-adenosine (ddA) (7) and 9-(2-fluoro-2,3-dideoxy-β-D-threo-pentofuranosyl)-adenine (F-ddA) (9).  相似文献   

6.
The extract of terrestrial alga Nostoc commune Vauch. has high antioxidative activity. Our study on N. commune Vauch. resulted in the isolation of two β-ionone derivatives, nostocionone and 3-oxo-β-ionone, together with four indole alkaloids, scytonemin, reduced scytonemin, N-(p-coumaroyl)tryptamine, and N-acetyltryptamine. The structures of the isolated compounds were determined on the basis of 1D and 2D NMR and MS analyses. Among these isolates, nostocionone and reduced scytonemin demonstrated strong antioxidative activities which were assessed by using a β-carotene oxidation assay.  相似文献   

7.
Abstract

Reaction of 2′,3′,5′-O-silylated inosine derivative 1 with 2, 3-O-isopropylidene-5-O-tritylribosyl chloride (3) in a two-phase (CH2Cl2-aq. NaOH) system in the presence of Bu4NBr gave three products, i. e., 6-O-α-, 6-O-β-, and N 1-β-isomers of glycosides 4, 5a, and 5b. A similar PTC reaction of 1 with 2, 3, 5-tri-O-benzylribosyl bromide (9) gave four regio- and stereo-isomers involving the N1-β-glycoside 10. Reaction of 1 with 2, 3, 5-tri-O-benzoylribosyl bromide (11) afforded three products involving the desired N1-β-glycoside 12b, which could be deprotected to give N 1-ribosylinosine (15b) as a useful intermediate for the synthesis of cIDPR.

  相似文献   

8.
Abstract

1-β-L-Arabinofuranosylcytosine (β-L-Ara-C, 7) and 2′-deoxy-2′-methylene-β-L-cytidine (β-L-DMDC, 14) have been synthesized via a multi-step synthesis from L-arabinose. These compounds were tested in vitro against L1210, P388, Sarcoma 180, and CEM cells, and found not to be active at a concentration up to 100 μM. β-L-Ara-C and β-L-DMDC were also tested against HSV-1 and HSV-2 and yielded ID50 values of 100 μM.  相似文献   

9.
New carbohydrate-based surfactants consisting of hydrophilic cellobiosyl and hydrophobic glucosyl residues, methyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-α-d-glucopyranoside 1 (GβGαMα, G: glucopyranosyl residue, α and β: α-(1→4)- and β-(1→4) glycosidic bonds, M: methyl group), 2 (GβGβMα), 3 (GβGαMβ), 4 (GβGβMβ), 5 (GβGαEα, E: ethyl group), 6 (GβGβEα), 7 (GβGαEβ), 8 (GβGβEβ) and eight α-and β-glycoside mixtures (a mixture of 1 and 2: 1/2 = 62/38 (9), 32/68 (10); a mixture of 3 and 4: 3/4 = 69/31 (11), 32/68 (12); a mixture of 5 and 6: 5/6 = 62/38 (13), 33/67 (14); a mixture of 7 and 8: 7/8 = 59/41 (15), 29/71 (16)) were synthesized via combined methods consisting of acid-catalyzed alcoholysis of cellulose ethers and glycosylation of phenyl thio-cellobioside derivatives. Their surface activities in aqueous solution depended on their chemical structures: α- or β-(1→4) linkage between hydrophilic cellobiosyl and hydrophobic glucosyl blocks, methyl or ethyl groups of hydrophobic glucosyl block, and α- or β-linked ether group at the C-1 of hydrophobic glucosyl block. The mixing effect of α- and β-glycosides on surface activities was also investigated. As a result, ethyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-2,3,6-tri-O-ethyl-β-d-glucopyranoside 7 (GβGαEβ) had the highest surface activity, and its critical micellar concentration (CMC) and γCMC (surface tension at CMC) values of compound 7 were 0.5 mM (ca. 0.03 wt %) and 34.5 mN/m, respectively. The surface tensions of α- and β-glycoside mixtures except for compounds 9 and 10 were almost equal to those of pure compounds. The syntheses of the mixtures of α- and β-glycosides without purification process are easier than those of pure compounds. Thus, the mixtures should be more practical compounds for industrial use as a surfactant.  相似文献   

10.
BackgroundProduction of various mucin-like glycoproteins could be useful for development of antibodies specific to disease-related glycoproteins as well as for the biosynthesis of clinically useful glycoproteins. A Saccharomyces cerevisiae strain capable of in vivo production of mucin-type core 1 structure (Galβ1-3GalNAcα1-O-Ser/Thr) has been reported, but a strain producing core 3 structure (GlcNAcβ1-3GalNAcα1-O-Ser/Thr) has not been constructed.MethodsTo generate core 3-producing strain, genes encoding uridine diphosphate (UDP)-Gal-4-epimerase, UDP-GalNAc transporter, UDP-GlcNAc transporter, and two glycosyltransferases were integrated into the genome. A Mucin-1-derived acceptor peptide (MUC1ap) was expressed as an acceptor. The amount of the resulting modified peptide was analyzed by HPLC.ResultsIntroduction of a codon-optimized UDP-GlcNAc:βGal β-1,3-N-acetylglucosaminyltransferase 6 (β3Gn-T6) gene yielded increases in β3Gn-T6 activity but did not alter the level of core 3 production. The highest in vitro activity of β3Gn-T6 was observed at Mn2 + concentrations of 10 mM and above. Supplementation of MnCl2 to the culture medium yielded increases of up to 25% in the accumulation of core 3 on the MUC1ap. The yeast invertase from the core 3-producing strain was less extensively N-glycosylated; however, it was partially restored by the addition of MnCl2 to the medium.ConclusionsPhysiological Mn2 + concentration in S. cerevisiae was insufficient to facilitate optimal synthesis of core 3. Mn2 + supplementation led to up-regulation of reaction of glycosylation in the Golgi, resulting in increases of core 3 production.General significanceThis study reveals that control of Mn2 + concentration is important for production of specific mammalian-type glycans in S. cerevisiae.  相似文献   

11.
The aim of this study was to produce rare β-carotene-modified carotenoids possessing 2-O (-H or -glu) and/or 3-O (-H or -glu) functionalities in their β-ionone ring(s) using a recombinant Escherichia coli approach. This involved expressing seven carotenoid biosynthesis genes (crtE, crtB, crtI, crtY, crtZ, crtX and crtG). From the cells of the recombinant E. coli, caloxanthin (β,β-carotene-2,3,2′,3′-tetrol)-3′-β-d-glucose, zeaxanthin (β,β-carotene-3,3′-diol) 3,3′-β-d-diglucoside, and nostoxanthin (β,β-carotene-2,3,3′-triol) (rare carotenoids) were isolated and identified. Caloxanthin 3′-β-d-glucose displayed potent 1O2 quenching activity (IC50 19 μM).  相似文献   

12.
Pseudomonas aeruginosa employs pili to mediate adherence to epithelial cell surfaces. The pilus adhesin of P. aeruginosa strains PAK and PAO has been shown to bind to the glycolipid asialo-GM1 (Lee et al., 1994 —accompanying article). PAK and PAO pili were examined for their abilities to bind to the synthetic βGalNAc(1–4)βGal (a minimal structural carbohydrate receptor sequence of asialo-GM1 and asialo-GM2 proposed by Krivan et al., 1988a) using solid-phase binding assays. Both pill specifically bound to βGalNAc(1–4)βGal. The binding of βGal-NAc(1–4)βGal-Biotin to the Immobilized PAK and PAO pili was inhibited by corresponding free pili. The receptor binding domain of the PAK pilus resides in the C-terminal disulphide-looped region (residues 128–144) of the pilin structural subunit (Irvin et al., 1989). Biotinylated synthetic peptides corresponding the C-terminal residues 128–144 of P. aeruginosa PAK and PAO pilin molecules were shown to bind to the βGalNAc(1–4)βGal-(bovine serum albumin (BSA)). The binding of biotinylated peptides to βGalNAc-(1–4)βGal-BSA was inhibited by PAK pili, Ac-KCTSDQDEOFIPKGCSK-OH (AcPAK(128–144)ox-OH) and Ac-ACKSTQDPMFTPKGCDN-OH (AcPAO(128–144)ox-OH) peptides. (In these peptides Ac denotes Nα -acetylation of the N-terminus, -OH means a peptide with a free a-carboxyl group at the C-terminus and the‘ox’denotes the oxidation of the sulphhydryl groups of Cys–129 and Cys–142.) Both acetylated peptides were also able to inhibit the binding of βGalNAc(1–4)βGal-biotin to the corresponding BSA-Peptide(128–144)ox-OH conjugates. The βGlcNAc(1–3)βGal(1–4)βGlc-biotin conjugate was unable to specifically bind to either Immobilized PAK and PAO pili or the respective C-termlnal peptides. The data above demonstrated that the P. aeruginosa pili recognize asialo-GM1 receptor analogue and that βGalNAc(1–4)βGal disaccharlde is sufficient for binding. Furthermore, the binding to βGalNAc(1–4)βGal was mediated by residues 128–144 of the pilin subunit.  相似文献   

13.
A new trihydroxyl carotenoid has been isolated from the yeast Rhodotorula aurantiaca (Saito) Lodder C.B.S. 317 and identified as 2-hydroxyplectaniaxanthin (3′,4′-didehydro,1′,2′-dihydro-β, ψ-caroten-2,1′,2′-triol). Its m.p., partition coefficient, Rf, extinction coefficient, ms and NMR spectra are reported. Since the hydroxyl group at C-2 of the β-ionone ring is unusual, a possible mechanism for the biosynthesis of this carotenoid has been proposed.  相似文献   

14.
The synthesis and stability of 4-methylumbelliferyl (1 → 3)-β-D-pentaglucoside 3 are described. The (1 → 3)-β-D-glucan isolated from the cell walls of Saccharomyces cerevisiae was recovered from the aqueous medium as water-insoluble particles by the spray drying (GS) method. The acid-solubilized (1 → 3)-β-D-oligoglucosides were prepared by partial acid hydrolysis of glucan. The peracetylated (1 → 3)-β-D-pentaglucoside 1 was obtained by isolation of peracetylated (1 → 3)-β-D-oligoglucoside mixture. The peracetylated 4-methylumbelliferyl (1 → 3)-β-D-pentaglucoside 2 was synthesized by treating compound 1 with the 4-methylumbelliferone and a Lewis acid (SnCl4) catalyst. NaOMe in dry methanol was used for the deacetylation of the blocked derivative, to give the target compound 3 in an overall yield of 35%. Activity assays with β-glucosidase indicated that compound 3 was much more stable than the corresponding pentasaccharide.  相似文献   

15.
Abstract: An analogue of colchicine,β-lumicolchicine, does not bind tubulin or disrupt microtubules. However, this compound is not pharmacologically completely inactive. β-Lumicolchicine was found to competitively inhibit [3H]flunitrazepam binding and to enhance muscimol-stimulated 36Cr-uptake in mouse cerebral cortical microsacs. It also markedly potentiated GABA responses in Xenopusoocytes expressing human α1β2γ2S, but not α1β2, GABAA receptor subunits; this potentiation was reversed by the benzodiazepine receptor antagonist flumazenil. These results strongly suggest a direct effect of β-Lumicolchicine on the GABAA receptor/chloride channel complex and caution that it possesses pharmacological effects, despite its inability to disrupt microtubules. Furthermore, β-Lumicolchicine is structurally unrelated to benzodiazepines or quinolines and may provide a novel approach to the synthesis of ligands for this receptor.  相似文献   

16.
The oxidizing activity of CYP109B1 from Bacillus subtilis was reconstituted in vitro with various artificial redox proteins including putidaredoxin reductase and putidaredoxin from Pseudomonas putida, truncated bovine adrenodoxin reductase and adrenodoxin, flavodoxin reductase and flavodoxin from Escherichia coli, and two flavodoxins from B. subtilis (YkuN and YkuP). Binding and oxidation of a broad range of chemically different substrates (fatty acids, n-alkanes, primary n-alcohols, terpenoids like (+)-valencene, α- and β-ionone, and the steroid testosterone) were investigated. CYP109B1was found to oxidize saturated fatty acids (conversion up to 99%) and their methyl and ethyl esters (conversion up to 80%) at subterminal positions with a preference for the carbon atoms C11 and C12 counted from the carboxyl group. For the hydroxylation of primary n-alcohols, the ω?2 position was preferred. n-Alkanes were not accepted as substrates by CYP109B1. Regioselective hydroxylation of terpenoids α-ionone (~70% conversion) and β-ionone (~ 91% conversion) yielded the allylic alcohols 3-hydroxy-α-ionone and 4-hydroxy-β-ionone, respectively. Furthermore, indole was demonstrated to inhibit fatty acid oxidation.  相似文献   

17.
AimsThis study evaluates ocular (iris, ciliary body and ciliary process) and nonocular (atria and lung) β-adrenoceptors in rabbit to characterize the plasma membrane β-adrenoceptors and binding affinities of β-adrenoceptor antagonists.Main methodsThe tissue segment binding method with a hydrophilic radioligand (?)-4-[3-t-butylamino-2-hydroxypropoxy]-[5,7-3H]benzimidazol-2-one ([3H]-CGP12177) was employed.Key findingsSpecific and saturable binding of [3H]-CGP12177 to intact tissue segments was detected by using (±)-propranolol to define nonspecific binding, showing a single population of plasma membrane binding sites with high affinity. Competition experiments with selective β1- and β2-adrenoceptor antagonists revealed a single population of β2-adrenoceptors in ocular tissues and of β1-adrenoceptors in atria, but mixed populations of β1- and β2-adrenoceptors in 70% and 30%, respectively, in lung. A competition curve for timolol was biphasic in lung and its binding affinity for β2-adrenoceptors was approximately 158-fold higher than for β1-adrenoceptors, indicating the β2-selectivity of timolol. In contrast, competition curves for stereoisomers of befunolol, carteolol, and propranolol were monophasic in all tissues. The (?)-enantiomers of these antagonists were more potent than corresponding (+)-enantiomers in displacing from [3H]-CGP12177 binding, and the isomeric potency ratios of befunolol and carteolol were less than those of propranolol.SignificanceThis study with tissue segment binding method suggests that the binding affinity of (?)-enantiomers of β-adrenoceptor antagonists for plasma membrane β-adrenoceptors (β1-adrenoceptors of atria, β2-adrenoceptors of ocular tissues, and mixed β1-/β2-adrenoceptors of lung) is higher than that of corresponding (+)-enantiomers and their stereoselectivity is different between β-adrenoceptor antagonists.  相似文献   

18.
Abstract

An economical two pot synthesis of 2′,3′-dideoxycytidine (2) from N4-acetyl-cytidine (4) has been developed. The key feature of this sequence is the in situ reductive elimination of a mixture of 1-(3-bromo-3-deoxy-2,5-di-O-acetyl-β-D-xylofuranosyl)-N4-acetylcytosine (5) and 1-(2-bromo-3-deoxy-3,5-di-O-acetyl-β-D-arabinofuranosyl)-N4-acetylcytosine (6) and subsequent hydrogenation of the resultant olefin over palladised charcoal.  相似文献   

19.
The switch from HbA (α2β2A) to HbC (α2β2C) synthesis was induced by injection of erythropoietin into a lamb homozygous for HbA. Serial samples of bone marrow were analyzed to detect the initial commitment of erythroid stem cells (CFU-E) to form colonies which made HbC in vitro, and to detect the initial accumulation of βC-globin mRNA and the onset of HbC synthesis in erythroblasts in vivo. CFU-E-derived erythroid colonies were formed in plasma clot culture at a low erythropoietin concentration, and the relative amounts of βA- and βC-globin synthesized were determined after a 24 hr pulse of 3H-leucine, added after 84 hr in culture. RNA was extracted from nuclei and cytoplasm of “early” and “late” populations of bone marrow erythroblasts which had been fractionated by Ficoll-Hypaque density centrifugation. The concentration of βA- and βC-globin mRNA was determined by annealing to purified synthetic DNAs (cDNAs) complementary to βA and βC mRNA. No βC-globin was synthesized in erythroblasts or in CFU-E-derived erythroid colonies prior to the injection of erythropoietin. An increase in the concentration of CFU-E in the bone marrow and the appearance of βC-globin synthesis in CFU-E-derived colonies were detected 12 hr after the erythropoietin injection. In contrast, βC mRNA was not detected in either “early” or “late” erythroid cells until 36 hr later. The first measurable βC-globin mRNA was accompanied by the appearance of βC-globin synthesis in bone marrow erythroblasts. Our results suggest that the accumulation of βC-globin mRNA is a relatively late event following induction of HbA to HbC switching by erythropoietin. The expansion of the compartment of erythroid stem cells and the commitment of CFU-E to βC-globin synthesis appear to precede the detectable accumulation of βC mRNA by 24–36 hr.  相似文献   

20.
A vast research has been conducted to find suitable and safe carriers for vital and pH-sensitive drugs including antibiotics. This article reports the use of easily accessible and abundant purified beta-lactoglobulin (β-LG) protein as the potential carrier of widely used Kanamycin (Kana) and Ciprofloxacin (Cip) antibiotics. Spectroscopic techniques (Fluorescence, UV–vis, Circular Dichroism) combined with molecular docking were used to determine the binding mechanism of these drugs. Fluorescence studies showed moderate binding affinity with the calculated binding constants KCip = 60.1 (±0.2)?×?103 M?1 and Kkana = 2.5 (±0.6)?×?103 M?1 with the order of Cip > Kana. Results of UV–vis were consistent with fluorescence measurements and demonstrated a stronger complexation for Cip rather than Kana. The secondary structure of β-LG was preserved upon interaction with Kana; however, a reduction in β-sheet content from 39.1 to 31.9% was convoyed with an increase in α-helix from 12.8 to 20.5% due to complexation of Cip. Molecular docking studies demonstrated that preferred binding sites of these drugs are not the same and several amino acids are involved in stabilizing the interaction. Based on the achieved results, Kana and Cip can spontaneously bind to β-LG and this protein may serve as their transport vehicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号