首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligo-L-methionine ethylester (OMOEt) prepared by the papain-catalyzed oligomerization of L-methionine ethylester (MetOEt) is a mixture of pentamer to dodecamer and has nearly the same supplementary effect as free methionine (Met) for the growth of rats when added to a low casein diet, but its supplementary effect to a low-soy protein isolate (SPI) diet is not consistent and depends on the degree of polymerization. Rats were fed for 2wk with an 8% casein or 10% SPI diet supplemented with 0.3% L-Met, each chemically synthesized MetnOEt with a polymerization degree (n) of 6, 7, 8, or 9, or with OMOEt prepared by papain-catalyzed polymerization of MetOEt. Met6OEt, Met7OEt, and Met8OEt had nearly the same supplementary effect on the growth of rats, as did free Met, both with the 8% casein and 10% SPI diets. The supplementary effect of Met9OEt was not significantly lower than that of Met when added to the 8% casein diet, but was significantly lower when added to the 10% SPI diet. The digestibility of Met9OEt supplemented to the 8% casein and 10% SPI diets was 50.5% and 35.6%, respectively. It appears likely that there is a gap in the bioavailability of oligomethionine between the octamer and nonamer when added to a low-protein diet, probably due to the rigidity of the structure increasing with the polymerization degree by α-helix formation. Although the differences in absorption rate of Met from OMOEt for a short time after feeding has been related to the different effects of supplemented OMOEt, the absorption rate of OMOEt for 30 min after feeding was not considered to be the main cause of the differential effects of OMOEt in this experiment.  相似文献   

2.
Aims: S‐adenosyl‐l ‐methionine (SAM) is an important biochemical molecule with great potential in the pharmacological and chemotherapeutic fields. In this study, our aims were to enhance SAM production in Saccharomyces cerevisiae. Methods and Results: Through spaceflight culture, a SAM‐accumulating strain, S. cerevisiae H5M147, was isolated and found to produce 86·89% more SAM than its ground control strain H5. Amplified fragment length polymorphism (AFLP) analysis demonstrated that there were genetic variations between strain H5M147 and its ground control. Through recombinant DNA technology, the heterologous gene encoding methionine adenosyltransferase was integrated into the genome of strain H5M147. The recombinant strain H5MR83 was selected because its SAM production was increased by 42·98% when compared to strain H5M147. Furthermore, cultivation conditions were optimized using the one‐factor‐at‐a‐time and Taguchi methods. Under optimal conditions, strain H5MR83 yielded 7·76 g l?1 of SAM in shake flask, an increase of 536·07% when compared to the strain H5. Furthermore, 9·64 g l?1 of SAM was produced in fermenter cultivation. Conclusions: A new SAM‐accumulating strain, S. cerevisiae H5MR83, was obtained through spaceflight culture and genetic modification. Under optimal conditions, SAM production was increased to a relative high level in our study. Significance and Impact of the Study: Through comprehensive application of multiple methods including spaceflight culture, genetic modification and optimizing cultivation, the yield of SAM could be increased by 6·4 times compared to that in the control strain H5. The obtained S. cerevisiae H5MR83 produced 7·76 g l?1 of SAM in the flask cultures, a significant improvement on previously reported results. The SAM production period with S. cerevisiae H5MR83 was 84 h, which is shorter than previously reported results. Saccharomyces cerevisiae H5MR83 has considerable potential for use in industrial applications.  相似文献   

3.
Griffiths SW  Cooney CL 《Biochemistry》2002,41(20):6245-6252
alpha 1-Antitrypsin is a metastable and conformationally flexible protein that belongs to the serpin family of protease inhibitors. Although it is known that methionine oxidation in the protein's active site results in a loss of biological activity, there is little specific knowledge regarding the reactivity of each of the protein's methionine residues. In this study, we have used peptide mapping to study the oxidation kinetics of each of alpha 1-antitrypsin's methionines in alpha 1-AT((C232S)) as well as M351L and M358V mutants. These kinetic studies establish that Met1, Met226, Met242, Met351, and Met358 are reactive with hydrogen peroxide at neutral pH and that each reactive methionine is oxidized in a bimolecular, rather than coupled, mechanism. Analysis of Met226, Met351, and Met358 oxidation provides insights regarding the structure of alpha 1-antitrypsin's active site that allow us to relate conformation to experimentally observed reactivity. The relationship between solution pH and methionine oxidation was also examined to evaluate methionine reactivity under conditions that perturb the native structure. Methionine oxidation data show that at pH 5, global conformational changes occur that alter the oxidation susceptibility of each of alpha 1-antitrypsin's 10 methionine residues. Between pH 6 and 9, however, more localized conformational changes occur that affect primarily the reactivity of Met242. In sum, this work provides a detailed analysis of methionine oxidation in alpha 1-antitrypsin and offers new insights into the protein's solution structure.  相似文献   

4.
5.
Two variants of the cytochrome c1 component of the Rhodobacter capsulatus cytochrome bc1 complex, in which Met183 (an axial heme ligand) was replaced by lysine (M183K) or histidine (M183H), have been analyzed. Electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectra of the intact complex indicate that the histidine/methionine heme ligation of the wild-type cytochrome is replaced by histidine/lysine ligation in M183K and histidine/histidine ligation in M183H. Variable amounts of histidine/histidine axial heme ligation were also detected in purified wild-type cytochrome c1 and its M183K variant, suggesting that a histidine outside the CSACH heme-binding domain can be recruited as an alternative ligand. Oxidation-reduction titrations of the heme in purified cytochrome c1 revealed multiple redox forms. Titrations of the purified cytochrome carried out in the oxidative or reductive direction differ. In contrast, titrations of cytochrome c1 in the intact bc1 complex and in a subcomplex missing the Rieske iron-sulfur protein were fully reversible. An Em7 value of -330 mV was measured for the single disulfide bond in cytochrome c1. The origins of heme redox heterogeneity, and of the differences between reductive and oxidative heme titrations, are discussed in terms of conformational changes and the role of the disulfide in maintaining the native structure of cytochrome c1.  相似文献   

6.
7.
Light-induced formation of singlet oxygen selectively oxidizes methionines in the heavy chain of IgG2 antibodies. Peptide mapping has indicated the following sensitivities to oxidation: M252 > M428 > M397. Irrespective of the light source, formulating proteins with the free amino acid methionine limits oxidative damage. Conventional peptide mapping cannot distinguish between the S- and R-diastereomers of methionine sulfoxide (Met[O]) formed in the photo-oxidized protein because of their identical polarities and masses. We have developed a method for identification and quantification of these diastereomers by taking advantage of the complementary stereospecificities of the methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which promote the selective reduction of S- and R-diastereomers of Met(O), respectively. In addition, an MsrBA fusion protein that contains both Msr enzyme activities permitted the quantitative reduction of all Met(O) diastereomers. Using these Msr enzymes in combination with peptide mapping, we were able to detect and differentiate diastereomers of methionine sulfoxide within the highly conserved heavy chain of an IgG2 that had been photo-oxidized, as well as those in an IgG1 oxidized with peroxide. The rapid identification of the stereospecificity of methionine oxidation by Msr enzymes not only definitively differentiates Met(O) diastereomers, which previously has been indistinguishable using traditional techniques, but also provides an important tool that may contribute to understanding of the mechanisms of protein oxidation and development of new formulation strategies to stabilize protein therapeutics.Key words: immunoglobulin gamma antibody, methionine sulfoxide, oxidation, photo-oxidation, methionine sulfoxide reductase  相似文献   

8.
ApoD (apolipoprotein D) is up-regulated in AD (Alzheimer's disease) and upon oxidative stress. ApoD inhibits brain lipid peroxidation in vivo, but the mechanism is unknown. Specific methionine residues may inhibit lipid peroxidation by reducing radical-propagating L-OOHs (lipid hydroperoxides) to non-reactive hydroxides via a reaction that generates MetSO (methionine sulfoxide). Since apoD has three conserved methionine residues (Met(49), Met(93) and Met(157)), we generated recombinant proteins with either one or all methionine residues replaced by alanine and assessed their capacity to reduce HpETEs (hydroperoxyeicosatetraenoic acids) to their HETE (hydroxyeicosatetraenoic acid) derivatives. ApoD, apoD(M49-A) and apoD(M157-A) all catalysed the reduction of HpETEs to their corresponding HETEs. Amino acid analysis of HpETE-treated apoD revealed a loss of one third of the methionine residues accompanied by the formation of MetSO. Additional studies using apoD(M93-A) indicated that Met(93) was required for HpETE reduction. We also assessed the impact that apoD MetSO formation has on protein aggregation by Western blotting of HpETE-treated apoD and human brain samples. ApoD methionine oxidation was associated with formation of apoD aggregates that were also detected in the hippocampus of AD patients. In conclusion, conversion of HpETE into HETE is mediated by apoD Met(93), a process that may contribute to apoD antioxidant function.  相似文献   

9.
The incorporation of intracisternally injected L-[methyl-3H]methionine [( 3H]Met) or S-adenosyl-L-[methyl-3H]methionine (Ado[3H]Met) into rat brain AdoMet and phospholipid pools was examined. When [3H]Met was administered, both AdoMet and phospholipid pools were labeled. However, exogenously injected Ado[3H]Met did not serve as a substrate for phospholipid-N-methyltransferases. It was concluded that only Ado[3H]Met formed in situ was utilized to methylate phospholipids and that this process was initiated on the cytoplasmic side of the membrane. The apparent biological half-life in brainstem of phosphatidyl-N-monomethylethanolamine and phosphatidyl-N,N-dimethylethanolamine formed from [3H]Met was 1.4 and 1.7 days, respectively. The half-life of phosphatidylcholine could not be determined due to interference from peripheral sources.  相似文献   

10.
Okuno T  Hirota S  Yamauchi O 《Biochemistry》2000,39(25):7538-7545
The protein folding character of cyt c was studied with the use of a photocleavable o-nitrobenzyl derivative of Met65 (NBz-Met65). For the NBz-Met65 cyt c, the Soret absorption band slightly blue shifted compared with the unlabeled cyt c, the 695 nm absorption band related to the Met80 sulfur ligation to the heme iron disappeared, and its resonance Raman spectrum was characteristic of a six-coordinate low-spin species, all characters demonstrating coordination of a non-native ligand, probably a histidine, instead of Met80 to the heme iron. The far-UV circular dichroism (CD) spectrum of cyt c was altered, and the transition midpoint concentration value of guanidine hydrochloride (GdnHCl) for unfolding the protein decreased by 0.9 M by the modification, which showed perturbation of the structure and decrease in protein stability, respectively. With irradiation of 308 nm laser pulses on the NBz-Met65 cyt c, the Soret absorption band slightly red shifted, the 695 nm absorption band appeared, and the CD spectrum shifted toward that of the native protein, which demonstrated recovery of the methionine heme coordination and the native protein structure, due to reconversion of NBz-Met65 to unlabeled methionine. A fast phase was detected as a change in Soret absorbance with a rate constant of 21 000 +/- 4000 s(-)(1) during refolding of cyt c initiated by irradiation of a 308 nm pulse on the NBz-Met65 cyt c in the presence of 2 M GdnHCl. The observed rate constant corresponded well with that reported by the tryptophan fluorescence study [Shastry, M. C. R. S., and Roder, H. (1998) Nat. Struct. Biol. 5, 385-392]. The intermediate decayed with a rate constant of 90 +/- 15, followed by another phase with a rate constant of 13 +/- 3 s(-)(1), and was not seen in the absence of GdnHCl.  相似文献   

11.
《MABS-AUSTIN》2013,5(3):299-308
Light-induced formation of singlet oxygen selectively oxidizes methionines in the heavy chain of IgG2 antibodies. Peptide mapping has indicated the following sensitivities to oxidation: M252 > M428 > M397. Irrespective of the light source, formulating proteins with the free amino acid methionine limits oxidative damage. Conventional peptide mapping cannot distinguish between the S- and R-diastereomers of methionine sulfoxide (Met(O)) formed in the photo-oxidized protein because of their identical polarities and masses. We have developed a method for identification and quantification of these diastereomers by taking advantage of the complementary stereospecificities of the methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which promote the selective reduction of S- and R-diastereomers of Met(O), respectively. In addition, an MsrBA fusion protein that contains both Msr enzyme activities permitted the quantitative reduction of all Met(O) diastereomers. Using these Msr enzymes in combination with peptide mapping, we were able to detect and differentiate diastereomers of methionine sulfoxide within the highly conserved heavy chain of an IgG2 that had been photo-oxidized, as well as those in an IgG1 oxidized with peroxide. The rapid identification of the stereospecificity of methionine oxidation by Msr enzymes not only definitively differentiates Met(O) diastereomers, which previously has been indistinguishable using traditional techniques, but also provides an important tool that may contribute to understanding of the mechanisms of protein oxidation and development of new formulation strategies to stabilize protein therapeutics.  相似文献   

12.
Ethanol is one of the most commonly used solvents to extract flavonoids from propolis. Hydrogen bonding interactions play an important role in the properties of liquid system. The main objective of the work is to study the hydrogen bonding interactions between flavonoid and ethanol. Luteolin is a very common flavonoid that has been found in different geographical and botanical propolis. In this work, it was selected as the representative flavonoid to do detailed research. The study was performed from a theoretical perspective using density functional theory (DFT) method. After careful optimization, there exist nine optimized geometries for the luteolin ? CH3CH2OH complex. The binding distance of X ? H···O, and the bond length, vibrational frequency, and electron density changes of X ? H all indicate the formation of the hydrogen bond in the optimized geometries. In the optimized geometries, it is found that: (1) except for the H2’, H5’, and H6’, CH3CH2OH has formed hydrogen bonds with all the hydrogen and oxygen atoms in luteolin. The hydrogen atoms in the hydroxyl groups of luteolin form the strongest hydrogen bonds with CH3CH2OH; (2) all of the hydrogen bonds are closed-shell interactions; (3) the strongest hydrogen bond is the O3’ ? H3’···O in structure A, while the weakest one is the C3 ? H3···O in structure E; (4) the hydrogen bonds of O3’ ? H3’···O, O ? H···O4, O ? H···O3’ and O ? H···O7 are medium strength and covalent dominant in nature. While the other hydrogen bonds are weak strength and possess a dominant character of the electrostatic interactions in nature.  相似文献   

13.
The effect of D–H···Sγ–Fe hydrogen bonding on the reduction potential of rubredoxin was investigated by the introduction of an O–H···Sγ–Fe hydrogen bond on the surface of Pyrococcus abyssi rubredoxin. The formation of a weak hydrogen bond between Ser44-Oγ and Cys42-Sγ in mutant W4L/R5S/A44S increased the reduction potential by 56 mV. When side effects of the mutation were taken into account, the contribution of the additional cluster hydrogen bond to the reduction potential was estimated to be +65 mV. The structural analysis was based on ultrahigh-resolution structures of oxidized P. abyssi rubredoxin W4L/R5S and W4L/R5S/A44S refined to 0.69 and 0.86 Å, respectively.  相似文献   

14.
15.
Dai C  Singh NK  Park M 《BMB reports》2011,44(12):805-810
Methionine sulfoxide reductase A (MSRA) is a ubiquitous enzyme that has been demonstrated to reduce the S enantiomer of methionine sulfoxide (MetSO) to methionine (Met) and can protect cells against oxidative damage. In this study, we isolated a novel MSRA (SlMSRA2) from Micro-Tom (Solanum lycopersicum L. cv. Micro-Tom) and characterized it by subcloning the coding sequence into a pET expression system. Purified recombinant protein was assayed by HPLC after expression and refolding. This analysis revealed the absolute specificity for methionine-S-sulfoxide and the enzyme was able to convert both free and protein-bound MetSO to Met in the presence of DTT. In addition, the optimal pH, appropriate temperature, and Km and Kcat values for MSRA2 were observed as 8.5, 25oC, 352 ± 25 μM, and 0.066 ± 0.009 S(-1), respectively. Disk inhibition and growth rate assays indicated that SlMSRA2 may play an essential function in protecting E. coli against oxidative damage.  相似文献   

16.
A wide variety of sulfur metabolites play important roles in plant functions. We have developed a precise and sensitive method for the simultaneous measurement of several sulfur metabolites based on liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) and 34S metabolic labeling of sulfur-containing metabolites in Arabidopsis thaliana seedlings. However, some sulfur metabolites were unstable during the extraction procedure. Our proposed method does not allow for the detection of the important sulfur metabolite homocysteine because of its instability during sample extraction. Stable isotope-labeled sulfur metabolites of A. thaliana shoot were extracted and utilized as internal standards for quantification of sulfur metabolites with LC–MS/MS using S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), methionine (Met), glutathione (GSH), and glutathione disulfide (GSSG) as example metabolites. These metabolites were detected using electrospray ionization in positive mode. Standard curves were linear (r2 > 0.99) over a range of concentrations (SAM 0.01–2.0 μM, SAH 0.002–0.10 μM, Met 0.05–4.0 μM, GSH 0.17–20.0 μM, GSSG 0.07–20.0 μM), with limits of detection for SAM, SAH, Met, GSH, and GSSG of 0.83, 0.67, 10, 0.56, and 1.1 nM, respectively; and the within-run and between-run coefficients of variation based on quality control samples were less than 8%.  相似文献   

17.
GroEL is an Escherichia coli molecular chaperone that functions in vivo to fold newly synthesized polypeptides as well as to bind and refold denatured proteins during stress. This protein is a suitable model for its eukaryotic homolog, heat shock protein 60 (Hsp60), due to the high number of conserved amino acid sequences and similar function. Here, we will provide evidence that GroEL is rather insensitive to oxidants produced endogenously during metabolism, such as nitric oxide (.NO) or hydrogen peroxide (H(2)O(2)), but is modified and inactivated by efficiently reactive species generated by phagocytes, such as peroxynitrite (ONOO(-)) and hypochlorous acid (HOCl). For the exposure of 17.5 microm GroEL to 100-250 microm HOCl, the major pathway of inactivation was through the oxidation of methionine to methionine sulfoxide, established through mass spectrometric detection of methionine sulfoxide and the reactivation of a significant fraction of inactivated GroEL by the enzyme methionine sulfoxide reductase B/A (MsrB/A). In addition to the oxidation of methionine, HOCl caused the conversion of cysteine to cysteic acid and this product may account for the remainder of inactivated GroEL not recoverable through MsrB/A. In contrast, HOCl produced only negligible yields of 3-chlorotyrosine. A remarkable finding was the conversion of Met(111) and Met(114) to Met sulfone, which suggests a rather low reduction potential of these 2 residues in GroEL. The high sensitivity of GroEL toward HOCl and ONOO(-) suggests that this protein may be a target for bacterial killing by phagocytes.  相似文献   

18.
Susceptibility of methionine residues to oxidation is a significant issue of protein therapeutics. Methionine oxidation may limit the product's clinical efficacy or stability. We have studied kinetics of methionine oxidation in the Fc portion of the human IgG2 and its impact on the interaction with FcRn and Protein A. Our results confirm previously published observations for IgG1 that two analogous solvent‐exposed methionine residues in IgG2, Met 252 and Met 428, oxidize more readily than the other methionine residue, Met 358, which is buried inside the Fc. Met 397, which is not present in IgG1 but in IgG2, oxidizes at similar rate as Met 358. Oxidation of two labile methionines, Met 252 and Met 428, weakens the binding of the intact antibody with Protein A and FcRn, two natural protein binding partners. Both of these binding partners share the same binding site on the Fc. Additionally, our results shows that Protein A may serve as a convenient and inexpensive surrogate for FcRn binding measurements.  相似文献   

19.
An intramolecular electron-transfer process has previously been shown to take place between the Cys3--Cys26 radical-ion (RSSR-) produced pulse radiolytically and the Cu(II) ion in the blue single-copper protein, azurin [Farver, O. & Pecht, I. (1989) Proc. Natl Acad. Sci. USA 86, 6868-6972]. To further investigate the nature of this long-range electron transfer (LRET) proceeding within the protein matrix, we have now investigated it in two azurins where amino acids have been substituted by single-site mutation of the wild-type Pseudomonas aeruginosa azurin. In one mutated protein, a methionine residue (Met44) that is proximal to the copper coordination sphere has been replaced by a positively charged lysyl residue ([M44K]azurin), while in the second mutant, another residue neighbouring the Cu-coordination site (His35) has been replaced by a glutamine ([H35Q]azurin). Though both these substitutions are not in the microenvironment separating the electron donor and acceptor, they were expected to affect the LRET rate because of their effect on the redox potential of the copper site and thus on the driving force of the reaction, as well as on the reorganization energies of the copper site. The rate of intramolecular electron transfer from RSSR- to Cu(II) in the wild-type P. aeruginosa azurin (delta G degrees = -68.9 kJ/mol) has previously been determined to be 44 +/- 7 s-1 at 298 K, pH 7.0. The [M44K]azurin mutant (delta G degrees = -75.3 kJ/mol) was now found to react considerably faster (k = 134 +/- 12 s-1 at 298 K, pH 7.0) while the [H35Q]azurin mutant (delta G degrees = -65.4 kJ/mol) exhibits, within experimental error, the same specific rate (k = 52 +/- 11 s-1, 298 K, pH 7.0) as that of the wild-type azurin. From the temperature dependence of these LRET rates the following activation parameters were calculated: delta H++ = 37.9 +/- 1.3 kJ/mol and 47.2 +/- 0.7 kJ/mol and delta S++ = -86.5 +/- 5.8 J/mol.K and -46.4 +/- 4.4 J/mol.K for [H35Q]azurin and [M44K]azurin, respectively. Using the Marcus relation for intramolecular electron transfer and the above parameters we have determined the reorganization energy, lambda and electronic coupling factor, beta. The calculated values fit very well with a through-bond LRET mechanism.  相似文献   

20.
We have designed a gene that encodes a polypeptide corresponding to amino acids 44-168 of the Thermus thermophilus cytochrome ba3 subunit II [Keightley et al. (1995) J. Biol. Chem. 270, 20345-20358]. The resulting ba3-CuAt10 protein separated into two fractions (A and B) during cation exchange chromatography which were demonstrated to differ only by N-terminal acetylation in fraction A. When the gene was expressed in an Escherichia coli strain that is auxotrophic for methionine and grown in the presence of selenomethionine (Se(Met)), the single methionine of the CuAt10 protein was quantitatively replaced with Se(Met). Native (S(Met)) and Se(Met)-substituted proteins were characterized by electrospray mass, optical absorption, and EPR spectroscopies and by electrochemical analysis; they were found to have substantially identical properties. The Se(Met)-containing protein was further characterized by Se and Cu K-EXAFS which revealed Cu-Se bond lengths of 2.55 A in the mixed-valence form and 2.52 A in the fully reduced form of CuA. Further analysis of the Se- and Cu-EXAFS spectra yielded the Se-S(thiolate) distances and thereby information on the Se-Cu-Cu and Se-Cu-S(thiolate) angles. An expanded EXAFS structural model is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号