首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contents of polyamines and 1-aminocyclopropane-1-carboxylic acid (ACC) in Hiproly barley callus were examined under different culture conditions. After auxin withdrawal, the contents of free polyamines changed conversely to the contents of ACC. In the absence of auxin, incorporation of l-[3,4–14C]methionine into polyamines and the activity of S-adenosylmethionine decarboxylase (SAMDCase) in the callus increased, then remained stable, but incorporation of l-[3,4- 14C]methionine into ACC, precursor of ethylene and ACC synthase activity once declined and increased again.

Aminooxyacetic acid (AOA) affected the increase in the levels of polyamines in the callus. 1- Aminoisobutyric acid (AIB) had a slight effect on the polyamine production. The incorporation of l-[3,4–14C]methionine into ACC and ACC synthase activity were inhibited by AOA, but not by « 4 AIB. AOA stimulated the activity of SAMDCase, and also enhanced the incorporation of l-[3,4- 14C]methionine into polyamines in the callus. Methylglyoxal-bis(guanylhydrazone) (MGBG) greatly enhanced the ACC production. The rate of incorporation of l-[3,4–14C]methionine into ACC and ACC synthase activity in the callus were significantly enhanced by MGBG. MGBG strongly inhibited SAMDCase activity and the incorporation of l-[3,4–14C]methionine into polyamines. Moreover, the synthesis of polyamines was inhibited by MGBG.

These results suggested that in Hiproly barley callus ACC production has an important effect on changes in the polyamine levels, and that polyamine and ethylene biosynthetic pathways are regulated by competition against each other.  相似文献   

2.
2-Aminooxyisobutyric acid (AOIB) has a partial structure of aminooxyacetic acid (AOA) in its whole structure, and resembles 2-aminoisobutyric acid (AIB) in their tetrahedral structures. Both AOA and AIB are inhibitors of ethylene biosynthesis; AOA inhibits the action of 1-aminocyclopropane-1-carboxylate (ACC) synthase and AIB inhibits that of ACC oxidase. The present study showed that AOIB inhibited the in vitro activities of both ACC synthase and ACC oxidase, which were synthesized heterologously in E. coli cells from corresponding carnation cDNAs, and the magnitudes of inhibition were similar to those caused by AOA and AIB; AOIB and AOA at 0.1 mM inhibited ACC synthase action by 75%, and AOIB and AIB at 10 mM inhibited ACC oxidase action by 16.3 and 22.5%, respectively. AOIB at 1 mM caused 91.5% reduction of maximum ethylene production rate as compared to the control in cut ‘Excerea’ carnation flowers undergoing senescence, thereby lengthening their vase life to 7 d from 3 d of the control flowers. The inhibition by AOIB was probably caused by its action resembling AOA, but not AIB. AOIB also extended significantly the vase life of cut flowers of ‘Pax’ carnation, and tended to do so in ‘Primero Mango’ carnation. The present findings suggest the potential of AOIB as a new preservative for carnations and other ornamentals in which ethylene plays a key role in the induction of senescence.  相似文献   

3.
MGBG [methylglyoxal bis(guanylhydrazone)], when added to the initial of callus subculture, promoted ethylene production in callus grawn in Bsh medium, and enhanced the ACC (1-aminocyclopropane-l-carboxylic acid) level and the ACC synthase activity both in the callus grown in Bsh medimn, and in the suspension cultures in Bsg liquid medium for induction of somatic embryogenesis. However, MGBG reduced the malonyl-ACC (MACC) level of the suspension tissues. The treatments of MGBG caused growth of the cultured tissues and induction efficiency of somatic embryogenesis to reduce. Moreover, the effects of MGBG was enhanced when it was added at induction medium of somatic embryogenesis. It could be concluded that this inhibitory effect of MGBG could be due to its promotion of ethylene, ACC levels and ACC synthase activity which has shown to inhibit somatic embryogenesis. The reduction of MACC level could be also involved in the MGBG effect on induction of the embryogenesis.  相似文献   

4.
5.
Experiments were conducted to test the possibility that organic amines inhibit ethylene production by inhibiting transport of the ethylene precursor, 1-aminocyclopro-pane-1-carboxylic acid (ACC), into the vacuole. α-Aminoisobutyric acid (αAIB) was used as a model substrate to study ACC uptake into the vacuole in relationship to ethylene production in pericarp slices of Lycopersicon esculentum Mill. cv. Liberty treated with and without organic amines and related substances. Organic amines (polyamines and other basic amines) inhibited αAIB uptake into the vacuole. These amines also enhanced ACC accumulation in the tissue and reduced the passive efflux of αAIB from the vacuole. Overall, ethylene production was inhibited. The inhibition of αAIB transport and of ethylene production followed a polyvalent cationic progression in the order polyamines > diamines> basic 1-amino acids. Ca2+, but not Mg2+, strongly stimulated αAIB uptake into the vacuole and ethylene production. At equal concentrations, Ca2+ counteracted the inhibitory effects of polyamines on both αAIB uptake and ethylene production. Competitive and irreversible inhibitors of polyamine biosynthesis stimulated αAIB uptake into the vacuole and ethylene production. The results indicate an apparent relationship between polyamines, ACC uptake into the vacuole and ethylene production.  相似文献   

6.
Of 16 compounds related to 1-aminocyclopropane-1-carboxylicacid (ACC), aminoisobutyric acid (AIB) inhibited the productionof endogenous ethylene in the cotyledonary segments of cocklebur(Xanthium pennsylvanicum Wallr.) seeds most strongly. AIB at4 mM inhibited the formation of ethylene by about 50%, althoughthe O2 uptake of the segments was not affected even at 20 mM.AIB also inhibited ethylene formation in the stem segments ofetiolated pea (Pisum sativum L. cv. Alaska) seedlings. Kineticanalysis with cell free extracts from etiolated pea shoots revealedthat AIB competitively inhibits the conversion of ACC into ethylene. (Received May 26, 1980; )  相似文献   

7.
In the cotyuledonary tissue of cocklebur ( Xanthium pennsylvanicum Wallr.) seeds, AIB (α- aminoisobutyric acid) inhibited not only the endogenous ethylene production but also the ACC (1-aminocyclopropane-1-carboxylic acid)-dependent and IAA-induced ones. The inhibition of the endogenous ethylene production by AIB was accompanied by the accumulation of ACC in the tissue. Thus AIB may act as a competitive inhibitor of the conversion of ACC to ethylene and thereby inhibit ethylene production. The promotion of ethylene production by D-isomers of some amino acids, such as phenylalanine, valine, threonine and methionine was accompained by and increse in the ACC content, the degree of which was similar to that of the stimulation of ethylene production. Moreover, these D-amino acids stimulated the conversion of exogenously applied ACC to ethylene. The corresponding L-isomers failed to produce these effects. It seems likely that D-amino-acid-stimulated ethylene production results from the increases of both the biosynthesis and degradation of ACC. Only for tryptophan did both D- and L-isomers cause an increase in ethylene production and in ACC content in the segments. The mechanism of stimulation of ethylene production by the tryptophen isomers is possibly due to their conversion to IAA in the cotyledonary tissue.  相似文献   

8.
Low O2 conditions were obtained by flowing N2 through the solution in which the tomato plants (Lycopersicon esculentum Mill cv Heinz 1350) were growing. Time course experiments revealed that low O2 treatments stimulated 1-aminocyclopropane-1-carboxylate (ACC) synthase production in the roots and leaves. After the initiation of low O2 conditions, ACC synthase activity and ACC content in the roots increased and reached a peak after 12 and 20 hours, respectively. The conversion of ACC to ethylene in the roots was inhibited by low levels of O2, and ACC was apparently transported to the leaves where it was converted to ethylene. ACC synthase activity in the leaves was also stimulated by low O2 treatment to the roots, reaching a peak after 24 hours. ACC synthase levels were enhanced by cobalt chloride and aminooxyacetic acid (AOA), although they inhibited ethylene production. Cobalt chloride enhanced ACC synthase only in combination with low O2 conditions in the roots. Under aeration, AOA stimulated ACC synthase activity in both the roots and leaves. However, in combination with low O2 conditions, AOA caused a stimulation in ACC synthase activity in the leaves and no effect in the roots.  相似文献   

9.
Browning, which is of varying intensity depending on species, develops in Hevea brasiliensis callus in vitro and can affect somatic embryogenesis. Endogenous ethylene appears to be involved since application of aminocyclopropane carboxylic acid (ACC) strongly enhances this browning. At the same time, peroxidases (EC 1.11.1.7), bonded polyphenol oxidase (EC 1.10.3.1) and NADH-quinone reductase (EC 1.6.99.5) are enhanced by ACC whereas superoxide dismutase (SOD: EC 1.15.1.1) and ascorbate peroxidase (EC 1.11.1.11) are decreased. In contrast, application of aminoacetic acid (AOA) causes spectacular decreases in bound and soluble polyphenol oxidase, peroxidase and NADH-quinone reductase activities whereas SOD and ascorbate peroxidase activities increase. Enzymatic activities in the control callus present a medium value, probably due to a considerable ethylene production in the culture medium. After 47 days culture. the initial catalase activity (EC 1.11.1.6) in the explants had disappeared completely. In contrast, after only 22 days, the silver nitrate and especially AOA treatments promoted considerable activities of catalase. The beneficial effect of the inhibitors of ethylene synthesis was reflected in the enhanced formation of embryogenic tissue, which varied from 1% (control or ACC) to 34% (AOA treatment).  相似文献   

10.
Effects of abscisic acid (ABA) and methyl jasmonate (MeJA) on ethylene production, ACC oxidase (ACO) activity, and content of 1-aminocyclopropane-1-carboxylic acid (ACC) during indirect somatic embryogenesis (SE) of Medicago sativa L. were studied. ABA and MeJA, at 50 μM, were applied during the induction, proliferation, or differentiation phase. ABA decreased ethylene production at the beginning of callus and SE induction and during the differentiation of somatic embryos. The hormone inhibited ACO activity in explants with overgrowing callus during the first two weeks of induction, in embryogenic suspension and also in differentiating embryos. The ACC content was reduced by ABA in callus at the end of SE induction, in embryogenic suspension and in globular embryos, but elevated in cotyledonary embryos. MeJA had no significant effect on ethylene production during M. sativa SE, despite the fact, that it inhibited ACO activity during the first two weeks of induction and in torpedo and cotyledonary embryos. The ACC content was increased by MeJA in 14-day-old callus and embryogenic suspension but was inhibited in globular embryos. Both ABA and MeJA seem to be involved in the regulation of ethylene biosynthesis during distinct phases of SE in M. sativa. It might be considered that exogenous ABA, more probably than MeJA, exerts its inhibitory effect on M. sativa somatic embryo formation by modifying ethylene production.  相似文献   

11.
Changes in the levels of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) and polyamines were simultaneously investigated during the early phases of alfalfa somatic embryogenesis. These included the period of induction and subculture of callus, and 3- and 7-day suspension cultures for the induction of somatic embryogenesis. The polyamines contained in the embryogenic callus were found to include putrescine (Put), spermidine (Spd) and spermine (Spm), but the level of Spm was much less than that of Put and Spd. There was a dramatic increase in MACC after induction of embryogenesis, and ACC levels were lower in somatic embryos than in embryogenic callus. Induction of embryogenesis for 3 days increased the levels of ACC and polyamines to a maximum level, and these then reduced as the embryogenesis proceeded. The ratios of Put/Spd and ACC/MACC were decreased during the induction. This indicated that both high levels of ACC and polyamines might be a prerequisite for early differentiation during the induction of the embryogenesis. Thus, there appears not to be competition between polyamine biosynthesis and ethylene biosynthesis at least during the induction of somatic embryogenesis, because both the polyamines and ACC were simultaneously increased during the induction period. Conversion of ACC into MACC and the maintenance of a relatively high level of polyamines, especially Spd, appear to be important for further development of the embryos.
When aminooxylvinylglycine (AOA) was added at the initiation of the callus subculture, it had no significant effect on the callus growth, the ethylene production and ACC level of the callus. However, AOA increased the numbers of the embryos accompanying an increase in Spd level and S-adenosylmethionine decarboxylase (SAMDC) activity. Thus, the AOA effect could be associated with Spd increase rather than with the effect of ethylene biosynthesis.  相似文献   

12.
The role of ethylene in anther culture of durum wheat ( Triticum durum Desf. cv. Ardente) was analyzed by testing the effects of 2-chloroethylphosphonic acid (ethrel) silver thiosulfate (Ag+), a -aminooxyacetic acid (AOA) and 1-aminocyclopropane-l-carboxylic acid (ACC) on microspore division observed after 21 days of culture and on development of calli estimated at day 45. The use of ethrel and Ag+ indicated a positive effect of ethylene on microspore division, whereas the use of AOA, and to a lesser extent ACC, snowed a negative effect. In contrast, the addition of ethrel or Ag+ indicated that ethylene inhibits the development of microspore-derived calli. AOA gave contradictory results. Ethylene production by anthers was about 7 pl anther−1h−1 and decreased during culture. ACC content in the anthers was maximal at day 9, whereas malonyl ACC (MACC) increased sharply from day 0 to day 3 and then decreased. The addition of AOA or ACC to the culture medium decreased or increased, respectively, ethylene production of anthers and the ACC and/or MACC content, but at concentrations higher than those that modified the formation of calli. This formation seems to occur in two successive phases: induction and initiation of microspore division, which was promoted by ethylene, followed by callus development, which was inhibited by ethylene.  相似文献   

13.
Aminooxyacetic acid (AOA), an inhibitor of ACC biosynthesis, applied together with methyl jasmonate (JA-Me) to mature green and light-green tomatoes cv. Venture greatly inhibited ethylene production stimulated by JA-Me, when analyzed in ripe and overripe stages. AOA applied alone did not affect ethylene production in the same conditions of treatment and analysis. It is suggested that after JA-Me treatment of tomatoes the turnover rate of ACC is higher (JA-Me stimulates EFE activity) in comparison to control tissues, and, consequently, AOA inhibited ethylene production stimulated by methyl jasmonate.  相似文献   

14.
In Anemia phyllitidis gametophytes two of the ethylene perception inhibitors (silver ions, Ag+; 2,5-norbornadiene, NBD) caused opposite effects on GA3-induced antheridia formation and on the increment of ACC (1-aminocyclopropane-1-carboxylic acid) content accompanying this process. Ag+ enhanced while NBD inhibited GA3-induced antheridiogenesis and each inhibitor modulated the level of ACC in a different manner. Cobalt ions (Co2+) and aminooxyacetic acid (AOA; the ethylene synthesis inhibitors), also modulated the level of GA3-induced ACC content differently. These results strongly confirm the earlier suggestion that ethylene plays a role of the second messenger in GA3-induced antheridiogenesis during “induction” and “expression” phases, and the 3rd h of the former phase is the time when elevation of ACC content induced while in the 6th h inhibited antheridiogenesis. Timing of changes in ACC content and morphogenetic effects of GA3-induced antheridiogenesis in A. phyllitidis gametophytes allowed to indicate that AOA together with NBD could participate in one while Co2+ and Ag+ in another ethylene synthesis and signaling pathway.  相似文献   

15.
Summary Ethylene production was measured in cultured barley (Hordeum vulgare L.) anthers. The pattern of ethylene production and the content of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) were different among cultivars. Ethylene production appeared to be related to embryogenesis (callus and embryo production). In cultivars in which anthers had low amounts of ACC and produced ethylene slowly, the addition of ethylene promotors (Ethrel or ACC) increased embryogenesis. However, in the cultivar Klages, in which anthers had high amounts of ACC and produced ethylene rapidly, the addition of an ethylene production inhibitor (putrescine) increased embryogenesis. Thus, an optimum level of ethylene production appears to be important for embryogenesis. The differences in anther response and callus production among cultivars may be due to both the capacity to produce ethylene and the sensitivity to high ethylene levels.  相似文献   

16.
The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.  相似文献   

17.
Yu Liu  Ling-yuan Su  Shang Fa Yang 《Planta》1984,161(5):439-443
1-Aminocyclopropane-1-carboxylic acid (ACC) is known to be converted to ethylene and conjugated into N-malonyl-ACC in plant tissues. When -amino[1-14C]isobutyric acid (AIB), a structural analog of ACC, was administered to mungbean (Vigna radiata L.) hypocotyl segments, it was metabolized to 14CO2 and conjugated to N-malonyl-AIB (MAIB). -Aminoisobutyric acid inhibited the conversion of ACC to ethylene and also inhibited, to a lesser extent, N-malonylation of ACC and d-amino acids. Although the malonylation of AIB was strongly inhibited by ACC as well as by d-amino acids, the metabolism of AIB to CO2 was inhibited only by ACC but not by d-amino acids. Inhibitors of ACC conversion to ethylene such as anaerobiosis, 2,4-dinitrophenol and Co2+, similarly inhibited the conversion of AIB to CO2. These results indicate that the malonyalation of AIB to MAIB is intimately related to the malonylation of ACC and d-amino acids, whereas oxidative decarboxylation of AIB is related to the oxidative degradation of ACC to ethylene.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AIB -aminoisobutyric acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid - MAIB -(malonylamino)-isobutyric acid - Mes 2-(N-morpholino)ethanesulfonic acid  相似文献   

18.
Using cotyledonary segments of cocklebur ( Xanthium pennsylvanicum Wallr. ) seeds, the inhibitory effect of α-aminoisobutyric acid (AIB) on ethylene production was compared with that of propyl gallate and CoCl2. Of these inhibitors only AIB was effective in causing the accumulation of endogenous free 1-aminocyclopropane-l-carboxylic acid (ACC) in the tissue. The degree of inhibition of ethylene production by AIB decreased markedly with increasing concentrations of pre-loaded ACC, while the inhibition by propyl gallate and CoCl2 changed little. Kinetic analysis showed that AIB competitively inhibited the conversion of pre-loaded ACC to ethylene, but propyl gallate and CoCl2 did not. Short-chain organic acids and analogues of AIB, such as acetic, propionic, butyric and cyclopropanecarboxylic acids, did not inhibit ethylene production by the segments. Thus, additional support for the competitive mode of inhibitory action of AIB on the conversion of free ACC to ethylene was provided.
A conjugated hydrolysable ACC was found to be present in abundance in cotyledons of this seed. However, its content in the tissue was hardly affected by treatment with the three inhibitors and by administration of exogenous ACC, suggesting that the conjugated ACC was not directly involved in ethylene production.  相似文献   

19.
Changes in the levels of free and protein amino acids in the callus of Hiproly barley were studied during differentiation. Adventitious roots were formed in the callus after 90 days of cultivation on modified White’s medium containing 1 μm indoleacetic acid (IAA) and 200 μm adenine sulfate, and callus placed on Murashige–Skoog’s medium without plant hormones formed adventitious roots after 30 days of cultivation. During differentiation, protein amino acids in the callus decreased, then increased, without an appreciable compositional change in the protein amino acids. The amount of free amino acids in the callus increased with root formation. The major free amino acids during differentiation were glutamine, asparagine, alanine, and proline. Glutamine increased until roots were found in the callus after cultivation. Asparagine gradually increased during differentiation.  相似文献   

20.
At harvest, fruit from apple trees sprayed with daminozide (+daminozide) had lower levels of aminocyclopropane-1-carboxylic acid (ACC) and produced significantly lower amounts of ethylene than untreated (–daminozide) fruit. Flesh discs from the fruit of +daminozide and –daminozide trees were fed precursors of ethylene to determine how daminozide inhibits ethylene production. ACC was metabolized to ethylene regardless of treatment. Methionine (MET), however, was only converted to ethylene by –daminozide fruit, and only after the fruit had been maintained at 4 °C for 5 months. +Daminozide fruit failed to convert MET to ethylene at harvest, as well as after cold storage. When daminozide was added to the incubation media of flesh discs it did not inhibit ethylene production or the conversion of ACC to ethylene. The addition of daminozide did, however, inhibit the metabolism of exogenous MET to ethylene. Aminooxyacetate acid (AOA) blocked both the endogenous production of ethylene and that from MET feeds. Daminozide inhibits ethylene production by preventing the conversion of MET to ACC, but it does not appear to act as a simple competitive inhibitor of ACC synthase activity.Abbreviations ACC aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - AOA aminooxyacetic acid - CH cycloheximide - MET methionine - PUT putrescine Author for correspondence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号