首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large amount of O-acetyl-l-homoserine (OAH) was found to be produced by trifluo-romethionine-resistant mutants derived from Corynebacterium glutamicum ESLR–146 (Thr?,ethionineR, selenomethionineR) and ETzR–606(Thr?,ethionineR, 1,2,4-triazoleR) by mutational treatment with ethyl methanesulfonate. Some cultural conditions for OAH production were examined with one of the mutants, ESLFR-736, which was derived from ESLR–146. Addition of l-methionine or l-serine decreased OAH production. Optimal level of l-threo- nine, a growth factor in ESLFR–736, for OAH production was about 200 μg/ml, and further addition of excess l-threonine repressed OAH production. Corn steep liquor (CSL) and yeast extract added simultaneously enhanced OAH production to a great extent. Thus, the amount of OAH production reached to a level of 10.5 mg/ml with a medium containing 10% glucose and 0.01 % of both CSL and yeast extract after 2 days incubation.

Cell-free extract of C. glutamicum catalyzed the formation of OAH from acetyl CoA and l-homoserine, while a corresponding reaction with succinyl CoA was hardly detected. These observations indicate that OAH but not O-succinyl-l-homoserine is an intermediate of l-methionine biosynthesis in C. glutamicum.

The regulation of homoserine-O-transacetylase was examined in a methionine requiring mutant of C. glutamicum. The enzyme activity was not inhibited by l-methionine, S-adenosyl-methionine and S-adenosylhomocysteine, separately or in combination. The synthesis of homoserine-O-transacetylase was strongly repressed by l-methionine. The enzyme level in an OAH producer, ESLFR–736, increased to about 2-fold of that in ESLR–146, the parental strain.  相似文献   

2.
Ethionine-resistant mutants derived from Corynebacterium glutamicum KY 9276 (Thr?) were found to accumulate l-methionine in culture media. One of the mutants, ER-107-4, which produced 250 μg/ml of l-methionine was subjected to further mutagenesis to obtain better l-methionine producers. l-Methionine production increased stepwise by successive endowing such markers as selenomethionine, 1,2,4-triazole, trifluoromethionine and methionine hydroxamate resistance. Thus, a mutant multi-resistant to ethionine, selenomethionine and methionine hydroxamate, ESLMR-724, produced 2 mg/ml of l-methionine in a medium containing 10% glucose.

Increase of l-methionine production was accompanied by increased levels and reduced repressibility of methionine-forming enzymes. The levels of methionine enzymes in ESLMR-724 increased to 2.5~4.2 fold of those in KY9276, In addition, homoserine-O-trans-acetylase and cystathionine γ-synthase which were strongly repressed by l-methionine in KY 9276 were stimulated by exogenous l-methionine in ESLMR-724. Implications of these results were discussed in relation to the productivity of l-methionine and the regulation of l-methionine biosynthesis.  相似文献   

3.
l-Threonine production by strain BB-69, which was derived from Brevibacterium flavum No. 2247 as a α-amino-β-hydroxyvaleric acid resistant mutant and produced about 12 g/liter of l-threonine, was reduced by the addition of l-lysine or l-methionine in the culture medium. Many of lysine auxotrophs but not methionine auxotrophs derived from strain B–2, which produced about 7 g/liter of l-threonine, produced more l-threonine than the parental strain. Except only one methionine auxotroph (BBM–21), none of lysine and methionine auxotrophs derived from BB–69 produced more l-threonine than the parental strain. Homoserine dehydrogenase of crude extract from strain B–2 was inhibited by l-threonine more strongly than that from BB–69. Strain BBM–21, a methionine auxotroph derived from BB–69, produced about 18 g/liter of l-threonine, 50% more than BB–69, while accumulation of homoserine decreased remarkably as compared with BB–69. l-Threonine production by BBM–21 was increased by the addition of l-homoserine, a precursor of l-threonine, while that by BB–69 was not. No difference was found among BBM–21, BB–69 and No. 2247 in the degree of inhibition of homoserine kinase by l-threonine. l-Threonine production by revertants of BBM–21, that is, mutants which could grow without methionine, were all lower than that of BBM–21. Correlation between l-threonine production and methionine or lysine auxotrophy was discussed.  相似文献   

4.
The accumulation of S-adenosylmethionine in adenine-requiring yeast cells grown in a culture medium containing dl-, l-, or d-methionine was much larger than that in cells grown in a methionine-free medium. The accumulation of S-adenosyl-d-methionine in the cells was significantly lower than that of S-adenosyl-l-methionine. When yeast cells containing a large amount of S-adenosyl-l-methionine were incubated in an adenine-free medium, adenosylmethionine was degraded, but poor and insignificant growth was observed indicating the meager nature of this compound as an adenine source. No degradation of accumulated S-adenosyl-d-methionine was detected. Isotopic experiment revealed that S-adenosyl-l-methionine in the yeast cells turned over at a considerable rate when the medium contained both adenine and l-methionine. Most of the l-methionine assimilated appears to be metabolized via S-adenosyl-l-methionine.  相似文献   

5.
l-Threonine producing α-amino-β-hydroxyvaleric acid resistant mutants were derived from E. coli K-12 with 3 x 10-5 frequency. One of mutants, strain β-101, accummulated maximum amount of l-threonine (1. 9 g/liter) in medium. Among isoleucine, methionine and lysine auxotrophs derived from E. coli K-12, only methionine auxotrophs produced l-threonine. In contrast, among isoleucine, methionine and lysine auxotrophs derived from β-101, l-threonine accumulation was generally enhanced in isoleucine auxotrophs. One of isoleucine auxotrophs, strain βI-67, produced maximum amount of l-threonine (4. 7 g/liter). Methionine auxotroph, βM-7, derived from β-101 produced 3.8 g/liter, and βIM-4, methionine auxotroph derived from β1-67, produced 6.1 g/liter, when it was cultured in 3% glucose medium supplemented with 100 μg/ml of l-isoleucine and l-methionine, respectively. These l-threonine productivities of E. coli mutants were discussed with respect to the regulatory mechanisms of threonine biosynthesis. A favourable fermentation medium for l-threonine production by E. coli mutants was established by using strain βM-4.  相似文献   

6.
We previously constructed an l-threonine-producing strain of E. coli W, KY8280, which is an Ile+ revertant of KY8279 which requires l-methionine, a,£-diaminopimelic acid and l-isoleucine [H. Kase et al., Agric. Biol. Chem., 35, 2089 (1971)]. From KY8280, another l-threonine-hyperproducing strain, KY8366, was obtained as an α-amino-β-hydroxy valeric acid (AHV, a threonine analog)-resistant mutant. Enzymatic analysis revealed that KY8280 constitutively expressed 8-fold higher l-threonine-sensitive aspartokinase I activity than KY8279. In addition, KY8366 constitutively expressed 13-fold higher l-lysine-sensitive aspartokinase III activity than KY8280. Such elevated levels of aspartokinases may contribute to the hyperproduction of l-threonine by these mutant strains. KY8366 produced 28 mg/ml of l-threonine in a culture medium fed with 12% glucose.  相似文献   

7.
Since l-prolyl diketopiperazines, l-prolyl-l-valine anhydride and l-leucyl-l-proline anhydride, had been isolated from the culture filtrate of Streptomyces sp. S-580, the mechanism of l-prolyl diketopiperazine formation by Streptomyces has been studied. These two l-prolyl diketopiperazines were not formed from their constituent amino acids incubated with intact cell or cell free homogenate of this strain in buffered salt solution containing energy source. However, from milk casein, poly peptone or gelatin, the former two were components of the culture medium of this strain, hydrolyzed with the pure streptomyces-protease, these l-prolyl diketopiperazines were obtained (only from gelatin, glycyl-l-proline anhydride were obtained in addition to these two). Furthermore, in hydrolysis of some synthetic l-prolyl peptides with this enzyme, l-prolyl diketopiperazine formation were also studied, and as the result, glycyl-l-proline anhydride was obtained from glycyl-l-prolyl-l-leucine but no l-prolyl diketopiperazine was formed from l-prolyl-l-leucyl-glycine. From these evidences, the possible route of l-prolyl diketopiperazine formation by Streptomyces has been discussed.  相似文献   

8.
Branched chain amino acid aminotransferase was partially purified from Pseudomonas sp. by ammonium sulfate fractionation, aminohexyl-agarose and Bio-Gel A-0.5 m column chromatography.

This enzyme showed different substrate specificity from those of other origins, namely lower reactivity for l-isoleucine and higher reactivity for l-methionine.

Km values at pH 8.0 were calculated to be 0.3 mm for l-leucine, 0.3 mm for α-ketoglutarate, 1.1 mm for α-ketoisocaproate and 3.2 mm for l-glutamate.

This enzyme was activated with β-mercaptoethanol, and this activated enzyme had different kinetic properties from unactivated enzyme, namely, Km values at pH 8.0 were calculated to be 1.2 mm for l-leucine, 0.3 mm for α-ketoglutarate.

Isocaproic acid which is the substrate analog of l-leucine was competitive inhibitor for pyridoxal form of unactivated and activated enzymes, and inhibitor constants were estimated to be 6 mm and 14 mm, respectively.  相似文献   

9.
3-Methylthiopropylamine (MTPA) formation from l-methionine in Streptomyces sp. K37 was studied in detail. The reaction was confirmed to be catalyzed by the decarboxylase of l-methionine. The properties of the enzyme were studied in detail using acetone dried cells or cell-free extract. The enzyme was specific for l-methionine. Pyridoxal phosphate stimulated the reaction and protected the enzyme against heat inactivation. The optimum pH for the reaction was 6.0~8.0 and the optimum temperature was about 40°C. Carbonyl reagents (10?2~10?3 m) inhibited the reaction completely, and silver nitrate and mercuric chloride (10?3~10?4 m) markedly inhibited the reaction. Km value for the reaction was 1.21 × 10?5 m. l-Methionine assay using the decarboxylase was attempted and was found to be applicable to practical use.  相似文献   

10.
A bacterial strain, NS671, which converts DL-5-(2-methylthioethyl)hydantoin stereospecifically to L-methionine, was isolated from soil and was classified into the genus Pseudomonas. With growing cells of Pseudomonas sp. strain NS671, DL-5-(2-methylthioethyl)hydantoin was effectively converted to L-methionine. Under adequate conditions, 34g of L-methionine per liter was produced with a molar yield of 93% from DL-5-(2-methylthioethyl)hydantoin added successively. In addition to L-methionine, other amino acids such as L-valine, L-leucine, L-isoleucine, and L-phenylalanine were also produced from the corresponding 5- substituted hydantoins, but these L-amino acids produced were partially consumed by strain NS671. The hydantoinase, by which 5-substituted hydantoin rings are opened, was ATP-dependent. The N-carbamylamino acid amidohydrolase was found to be strictly L-specific, and its activity was inhibited by high concentration of ATP.  相似文献   

11.
Regulatory properties of the enzymes in l-tyrosine and l-phenyalanine terminal pathway in Corynebacterium glutamicum were investigated. Prephenate dehydrogenase was partially feedback inhibited by l-tyrosine. Prephenate dehydratase was strongly inhibited by l-phenylalanine and l-tryptophan and 100% inhibition was attained at the concentrations of 5 × 10?2mm and 10?1mm, respectively. l-Tyrosine stimulated prephenate dehydratase activity (6-fold stimulation at 1 mm) and restored the enzyme activity inhibited by l-phenylalanine or l-tryptophan. These regulations seem to give the balanced synthesis of l-tyrosine and l-phenyl-alanine. Prephenate dehydratase from C. glutamicum was stimulated by l-methionine and l-leucine similarly to the enzyme in Bacillus subtilis and moreover by l-isoleucine and l-histidine. C. glutamicum mutant No. 66, an l-phenylalanine producer resistant to p-fluorophenyl-alanine, had a prephenate dehydratase completely resistant to the inhibition by l-phenylalanine and l-tryptophan.  相似文献   

12.
Certain Streptomyces strains were found to accumulate an unknown substance in culture broth when the microorganisms were grown in the medium containing dl-methionine. The substance was isolated from the culture broth as hydrochloride and was identified as 3-methylthiopropylamine (MTPA), decarboxylated product of methionine, from its melting point, chemical composition, infrared spectrum, and other properties. Cultural conditions for MTPA formation in Streptomyces sp. K 37 were investigated. The yield of MTPA from l-methionine reached about 90% with a culture medium containing corn steep liquor. Namely, 6.47 mg of MTPA per millilitre of culture broth was produced from 10 mg of l-methionine per millilitre of the growth medium. The transforming activity was found in the cells of the early culture period. MTPA-producing activity was induced by l- methionine in the medium. d-Methionine was not utilized as a substrate of the reaction with intact cells. Optimum pH for the reaction appeared to be 6.0~8.0.  相似文献   

13.
Certain strains of Streptomyces were found to convert l-methionine into 3-methylthio-propylamine (MTPA), but not d-methionine. Now, optical resolution of DL-methionine was attempted using this phenomenon. Streptomyces sp. K37 was cultured in a medium containing DL-methionine (10 mg/ml). The culture filtrate was applied to a column of Diaion SA-21A (OH form). MTPA was recovered from the effluent by ether exraction. The Diaion SA-21A was eluted with 1N HCl and the eluate was applied to a column of Diaion SK-1 (H form). d-Methionine was eluted from the column with 1N NH4OH and recovered after concentration, decolorization with active carbon, and precipitation with ethanol. The yields of MTPA and d-methionine from the broth were 69.5% and 89.5%, respectively.  相似文献   

14.
l-Leucine-pyruvate and l-leucine-α-ketoglutarate(α-KGA) transaminases were separated by DEAE-cellulose column chromatography and partially purified to 200- and 50-fold, respectively, from the cell-free extract of Acetobacter suboxydans (Gluconobacter suboxydans IFO 3172). The optimum pH range of the former was 5.0~5.5 and that of the latter was 8.5~9.0. l-Leucine, l-citrulline, and l-methionine were the most effective amino donors for the l-leucine-pyruvate transaminase. Basic amino acids as well as aromatic amino acids were able to be amino donors for the transamination with pyruvate. α-KGA was effective as an amino acceptor for this enzyme. The l-leucine-α-KGA transaminase had the typical properties of the branched-chain amino acid transaminase in its substrate specificity.

The reaction products of the transaminations were identified. l-Alanine was formed from pyruvate and l-glutamate from α-KGA. α-Keto acids formed from various amino acids by the l-leucine-pyruvate transaminase were also identified.  相似文献   

15.
Solution containing l-leucine and l-methionine cultured by Aspergillus flavus were found to develop cheese-like flavor.

α-Keto-isocaproic acid was isolated and identified from the culture of l-leucine and α-keto-β-methylmercaptobutyric acid from that of l-methionine. The flavor was also developed from the mixture of the synthetic sample of α-ketoisocaproic acid and α-keto-β-methylmercaptobutyric acid.  相似文献   

16.
Two amino acid derivative antibiotics, hadacidin and duazomycin A, were isolated as inhibitors of de novo starch synthesis in excised leaf segments from culture filtrates of Penicillium No. 467 and Streptomyces No. 317, respectively. In addition, azaserine, 6-diazo-5-oxo-l-norleucine (DON), and trifluoro-dl-methionine were found to be potent inhibitors among about 70 kinds of commercial amino acid derivatives. These amino acid derivatives inhibited de novo starch synthesis at concentrations ranging from 1 to 10ppm but did not inhibit photosynthetic oxygen evolution at a concentration of 100ppm. The inhibition caused by these diazo compounds was reversed by a supplement of l-glutamine. With hadacidin and trifluoro-dl-methionine, however, the reversal was not observed upon the addition of l-aspartic acid or l-methionine, respectively. Among these active compounds, hadacidin was herbicidal against lettuce and barnyard millet by foliar treatment at a concentration of more than 1000 ppm.  相似文献   

17.
Using a minimal medium containing a methionine analog together with a small amount of S-adenosylmethionine (SAM), many SAM requiring mutants which responded only to SAM and not to methionine, S-adenosylhomocysteine, or homocysteine were efficiently isolated from Corynebacterium glutamicum TLD-140 after mutagenesis. Among them, SAM-14 and SAM-19 selected from selenomethionine resistant mutants were subjected to further investigation. Both mutants were unable to grow in a minimal medium and had no detectable activity of SAM synthetase. Both mutants acquired higher resistance to methionine hydroxamate and ethionine as well as to selenomethionine than TLD-140 and produced l-methionine in a medium.

Homoserine-O-transacetylase in SAM-19 was subject to full repression by the addition of excess SAM to the growth medium and was not repressed under SAM limitation, whereas addition of excess l-methionine under SAM limitation caused a partial repression of the enzyme. SAM synthetase as well as l-methionine biosynthetic enzymes in a methionine auxotroph of C. glutamicum was repressed by the addition of l-methionine to the growth medium.

These results suggest that SAM is implicated in the repression of l-methionine synthesizing enzymes in C. glutamicum.  相似文献   

18.
The growth of Brevibacterium flavum No. 2247 was inhibited over 90% at a concentration above 1 mg/ml of α-amino-β-hydroxyvaleric acid, a threonine analogue, and the inhibition was reversed by the addition of l-threonine, and to lesser extent by l-leucine, l-isoleucine, l-valine and l-homoserine. l-Methionine stimulated the inhibition. Several mutants resistant to the analogue produced l-threonine in the growing cultures. The percentage of l-threonine producer in the resistant mutants depended on the concentration of the analogue, to which they were resistant. The best producer, strain B-183, was isolated from resistant strains selected on a medium containing 5 mg/ml of the analogue. Mutants resistant to 8 mg/ml of the analogue was derived from strain B-183 by the treatment with mutagen, N-methyl-N’-nitro-N-nitrosoguanidine. Among the mutants obtained, strain BB-82 produced 13.5 g/liter of l-threonine, 30% more than did the parental strain. Among the resistant mutants obtained from Corynebacterium acetoacidophilum No. 410, strain C-553 produced 6.1 g/liter of l-threonine. Several amino acids other than l-threonine were also accumulated, and these accumulations of amino acids were discussed from the view of regulation mechanism of l-threonine biosynthesis.  相似文献   

19.
Homoserine dehydrogenases and aspartokinases in l-threonine- or l-threonine and l-lysine-producing mutants derived from Corynebacterium glutamicum KY 9159 (Met?) were studied with respect to the sensitivity to the inhibition by end products, l-threonine and l-lysine. The activities of homoserine dehydrogenases in the mutants which produced l-threonine or l-threonine and l-lysine were slightly less susceptible to the inhibition by l-threonine than the activity in the parent strain, KY 9159. The aspartokinases in the threonine-producing mutants, KY 10484 and KY 10230, which were resistant to α-amino-β-hydroxylvaleric acid (AHV, a threonine analog) and more sensitive to thialysine (a lysine analog) than the parent, were sensitive to the concerted feedback inhibition by l-lysine and l-threonine by about the same degree as KY 9159. The aspartokinase in an AHV- and thialysine-resistant mutant, KY 10440, which was derived from KY 10484 and produced about 14 mg/ml of l-threonine in a medium containing 10% glucose was less susceptible to the concerted feedback inhibition than KY 10484 or KY 9159, although the activity was still under the feedback control. In the parent strain, l-threonine activated aspartokinase activity in the absence of ammonium sulfate, an activator of the enzyme, but partially inhibited the activity in the presence of the salt. On the other hand, the enzyme of KY 10440 was activated by l-threonine either in the presence or in the absence of the salt. In another AHV- and thialysine-resistant mutant, KY 10251, which was derived from KY 10230 and produced both 9 mg/ml of l-threonine and 5/5 mg/ml of l-lysine, l-threonine and l-lysine simultaneously added hardly inhibited the activity of aspartokinase.

Implications of these results are discussed in relation to l-threonine or l-lysine production, AHV or thialysine resistance and regulation of l-threonine biosynthesis in these mutants.  相似文献   

20.
Several kinds of mutants of Pseudomonas melanogenum were derived by mutational treatment with N-methyl-N’-nitro-N-nitrosoguanidine, and selected for 3,4-dihydroxyphenyl-l-alanine (l-DOPA) production by newly devised screening method which was carried out on agar plates based on violet-black colour formation by the reaction of l-DOPA with iron ion. Mutants tested were; glucose-insensitive mutant, cysteine-insensitive mutant, 3-amino-tyrosine-resistant mutant and p-fluorophenylalanine-resistant mutant. Some colonies isolated by monocolony procedure without mutagenic treatment were also tested. Among the 3-aminotyrosine-resistant mutants many good l-DOPA producers were found.

An 3-aminotyrosine-resistant mutant, strain ATN–36, produced 14 to 15 mg/ml of l-DOPA from 26 mg/ml of l-tyrosine (68 % in molar conversion ratio). When the cell concentration in reaction mixture was increased to 4-times the concentration of culture broth, l-DOPA production reached to 21 mg/ml from 52 mg/ml of tyrosine. An enzymatic basis of the high l-DOPA productivity of the improved mutants was found to be due to the increased tyrosinase activity (150 to 160% of the parental strain) of the mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号