首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat denaturation of soybean 11S globulin was examined at 70° and 100°C in phosphate buffer (pH 7.6), at 0.01 and 0.5 ionic strength. Gel electrophoresis (Davis system) indicated that heat-denatured soybean 11S globulin contained two major components (buffer-soluble form). But they were not identified at 70°C-0.5 ionic strength. Gel filtration followed by SDS-gel electrophoresis showed that the major components were composed of a monomer and at least three of kinds of oligomers containing only an acidic subunit. Gel filtration of the precipitate formed at 100°C at 0.5 ionic strength gave two peaks. SDS-gel electrophoresis indicated that the first peak contained aggregates of highly polymerized subunits, and the second peak contained a monomer of basic subunit and seven kinds of oligomers with various proportions of basic subunits to an acidic subunit.  相似文献   

2.
The constituent subunits of 11S globulin of broad bean, legumin, were separated into basic subunits (BS, a mixture of BSI, BSII, and BSIII) and acidic subunits (ASI, ASII, and ASIII). The 11S components were formed in reconstitution reactions from combinations of BS and one or two each of the acidic subunits. The reconstituted 11S components were similar to the native legumin; they all consisted of acidic (A) and basic (B) subunits linked by disulfide bridges in the ratio of 1:1 and had the 6 (AB) structure. In the reconstitution of 11S components, ASI preferentially selected BSI from among the three kinds of BS, and ASII and ASIII exhibited selectivities for BSII and BSIII, respectively. The same selectivities were observed in the reconstitution reaction containing all subunits and in the renaturation reaction from the reduced-denatured state. The selectivity of each acidic subunit for basic subunits coincides with the combination of acidic and basic subunits in the native legumin. The 11S component was reconstituted from any combination of the intermediary subunits examined. This may be one of the reasons for the occurrence of heterogeneity of legumin molecular species.  相似文献   

3.
The acidic and basic subunits are the main constituents of soybean 11S globulin. Each of these two subunits consists of three major polypeptides of similar size. The molecular weights of the acidic and basic subunits have been previously estimated to be 37,000 and 22,000, respectively, by SDS-polyacrylamide gel electrophoresis (Catsimpoolas et al, J. Set Food. Agric., 22, 448 (1971)). Reevaluation of the molecular weights by 6 m guanidine gel chromatography gave the values of 28,000 and 18,000, respectively. These are supported by results of equilibrium sedimentation in the same solvent. The previously reported values seem to have been overestimated, especially for the acidic subunits. The overestimations seem to be related to the high percentage of acidic amino acids, which causes the conformation of the SDS-protein polypeptide complexes of these subunits to deviate from those of proteins usually employed as standards for molecular weight estimations.  相似文献   

4.
(S)-1-(2-Naphthyl)ethanol was yielded by immobilized pea (Pisum sativum L.) protein (IPP) from (R, S) 2-naphthyl ethanol (>99% ee, yield; about 50%), in which the (R)-enantiomer was selectively oxidized to 2-acetonaphthone. IPP could be reused consecutively at least three times without any decrease of yield and optical purity.  相似文献   

5.
A short interdomain sequence between the N- and C-terminal domains of beta-conglycinin, the major 7S seed storage protein of soybean, was selected as a target for insertion of amino acid residues specifically cleaved by an asparaginyl endopeptidase that processes globulins into acidic and basic chains. Modified beta-conglycinin subunits containing the proteolytic cleavage site self-assembled into trimers in vitro at an efficiency similar to that of the unmodified subunit. In contrast to the absence of cleavage of the unmodified subunits, however, the modified beta-conglycinin trimers were processed by purified soybean asparaginyl endopeptidase into two polypeptides, each the size expected for the beta-conglycinin N- and C-terminal domains, respectively. The cleavage did not alter the assembly of mutant beta-conglycinins and the cleaved mutant trimers remained stable to further proteolytic attack. To examine the possibility of coassembly between the cleaved 11S and 7S subunits, in vitro processed mutant beta-conglycinin subunits were mixed with native dissociated 11S globulin preparations. Reassembly at a high ionic condition did not induce the 7S subunits to interact with 11S subunits to form hexameric complexes. Thus, cleavage of 7S globulin subunits into acidic and basic domains may not be sufficient for hexamer assembly to occur. Biotechnological implications of the engineered proteins are discussed.  相似文献   

6.
Pseudo- and hybrid-11S globulins were reconstituted from native acidic and basic subunits of soybean and broad bean 11S globulins. The subunit structures of these two globulins are known to be similar to each other. Pseudo-11S globulins were formed in combinations between glycinin acidic subunit (G-AS1 + 2) and glycinin basic subunit (G-BS) and between legumin acidic subunit (L-ASII) and legumin basic subunit (L-BS). Hybrid-11S globulins were formed in combinations between G-AS1 + 2 and L-BS and between L-ASII and G-BS. The yields of the reconstituted 11S components of G-AS1 +2 + G-BS and G-AS1 + 2 + L-BS were lower than those of L-ASII + G-BS and L-ASII + L-BS. These pseudo- and hybrid-11S globulins were similar to native 11S globulins; they all consisted of reconstituted intermediary subunits which were composed of acidic and basic subunits linked by disufide bridges and had molecular weights similar to those of native 11S globulins. However, the dissociation-association behaviors of pseudo-glycinin and hybrid-11S globulins were different from those of native 11S globulins.  相似文献   

7.
《Phytochemistry》1986,26(1):41-45
The soybean seed 7S globulin subunits, i.e. α, α′, β and γ-subunits of β-conglycinin, the γ-conglycinin subunit and the HI/HII and LII subunits of basic 7S globulin were purified and the NH2-terminal amino acid sequences of all these subunits except the γ-subunit of β-conglycinin were determined. Only the NH2-terminal regions of the α and α′-subunits showed high sequence homology. However, sequencing of tryptic peptides from the seven subunits revealed that internal region sequences were highly homologous among the four subunits of β-conglycinin. In contrast to the β-conglycinin subunits, no sequence homology was found among the other subunits. On the basis of these results, the major 7S globulin fraction is considered more heterogeneous in primary structure than another major globulin fraction, 11S globulin (glycinin), in soybean seeds.  相似文献   

8.
Approximately 40% of defatted perilla seeds consists of proteins which are primarily composed of globulin (84%). The amino acid profile of perilla proteins demonstrated balanced amounts of all essential amino acids, except for lysine. The molecular mass of the predominant globulin was estimated to be 340 kDa by gel filtration. This globulin was separated into three intermediary subunits (54, 57 and 59 kDa) by SDS–PAGE. It is suggested from these results that the globulin exists as a hexamer. A treatment with 50 mM dithiothreitol enabled the intermediary subunits to be separated into three acidic subunits (31–34 kDa) and four basic subunits (23–25 kDa). It is interesting that this subunit structure is the same as that of sesame α-globulin, despite them coming from different families. Compared to sesame α-globulin, the heat-induced gel of perilla globulin had better water-holding ability, despite it displaying the same degree of gel hardness.  相似文献   

9.
亚油酸体系脂质过氧化引起的DNA损伤研究   总被引:5,自引:3,他引:2  
用含两个双键的不饱和脂肪酸-亚油酸作为模型化合物,分析其过氧化程度,同时检测了由于脂质过氧化而引起的DNA损伤,结果表明:在脂质过氧化过程中,DNA与亚油酸过氧化产物反应生成一种荧光物质、其最大激发波长315nm最大发射波长410nm并随着氧化时间增加而增加,与此同时,双链DNA百分含量明显下降,DNA-溴乙锭复合物荧光显著降低,反映了DNA二级结构受到破坏.上述结果揭示了脂质过氧化产物在自由基引起DNA的损伤中可能起重要作用  相似文献   

10.
The acidic and the basic subunits were shown to be present in equimolar amounts in the 11S globulin molecule by the densitometric scanning of the SDS gel and the molecular weight consideration. The four acidic subunits (A1, A2, A3 and A4) were found to be present in the approximate molar ratio of 1:1:2:2. Four basic subunits separated and designated as B1, B2, B3 and B4 based on the relative mobilities in the acidic gel in 7 m urea were found to be present in the approximate molar ratio of 1:1:2:2. The four basic subunits were fractionated in approximately same amounts into three different peaks, peak I (B1 and B2), peak II (B3) and peak III (B4) by CM-Sephadex C–50 column chromatography in the presence of 6 m urea. Three kinds of intermediary subunits of 11S globulin were fractionated with DEAE-Sephadex A–50 in the absence of reducing agents in 6 m urea, and disulfide bonds appeared to participate in the binding between the acidic and the basic subunits in the molar ratio of 1: 1 with the following combinations; A1 and A2 combined with B3, A3 with B1 and B2, and A4 with B4. In view of the above results and molecular weight consideration, a new model of subunit structure was proposed for 11S globulin.  相似文献   

11.
The paper describes the amino acid sequence of a 26 kDa basic subunit of 13S globulin of common buckwheat (Fagopyrum esculentum Moench). The protein has 93 and 75% sequence homology with 11S globulin of Coffea arabica and beta subunit of 11S globulin of Cucurbita pepo respectively. The subunit has the "globally conserved" N-terminal sequence consisting of Gly-Ile-Asp-Glu and the cysteine at P7' from the proteolytic processing site. A conserved 7 residue domain of Pro-His-Trp-Asn-Ile-Asn-Ala, characteristic of basic subunits of legumins from non-leguminous angiosperms, is also present in this protein. A distinguishing features of this subunit is the relatively high level of lysine and methionine.  相似文献   

12.
On SDS-polyacrylamide gel electrophoresis, sesame seed 13S globulin was separated into three intermediary subunits termed IS1 IS2 and IS3. Following a treatment with 0.2M 2-mercaptoethanol, the globulin was separated into three acidic subunits termed AS1 AS2 and AS3, and four basic subunits termed BS1 BS2, BS3 and BS4. Two dimensional SDS-gel electrophoresis before and after treatment with 0.2 M 2-mercaptoethanol revealed that IS1 was composed of two combinations of acidic and basic subunits, these being S1 and BS2, and AS2 and BS2. IS2 was found to be composed of AS3 and BS1, and IS3 was composed of AS2 and BS3, and AS2 and BS4. These combinations were consistent with the reactivity of each subunit to a fluorescent thiol reagent. The amino acid compositions were similar among the three acidic subunits and also among the four basic subunits. However, between the acidic and basic subunits, there were great differences in the amino acid composition, especially in the amount of glutamic acid.  相似文献   

13.
Four kinds of acidic subunits and three kinds of basic subunits of 11S globulin were separated by polyacryl amide gel electrophoresis in the urea system. The four acidic subunits designated as A1, A2, A3 and A4 (Rm=0.35, 0.40, 0.46 and 0.56 respectively) were isolated by stepwise elution followed by repeating gradient elution with DEAE-Sephadex A-50 in the presence of 6 m urea at 5°C.

Subsequently, some physico-chemical properties of the subunits were determined. For example, N-terminal amino acids were determined as phenylalanine for both A1 and A2 and as leucine (or isoleucine) for both A3 and A4 by the DNP-amino acid method. The molecular weights of A1, A2 and A3 were shown as 37,000 and 45,000 for A4 by SDS-gel electrophoresis. The amino acid compositions of the acidic subunits were roughly similar to each other, but some remarkable differences were observed in the content of basic amino acids (lysine, histidine and arginine), serine and proline.  相似文献   

14.
In anaerobically glucose-grown yeast isocitrate lyase (EC 4.1.3.1.), malate synthase (EC 4.1.3.2.) and malate dehydrogenase (EC 1.1.1.37.) are repressed by glucose. 24 h cultures still contain 0.3–0.4% glucose in the medium, which is enough to completely repress these activities. Aeration of these cells, in buffer containing acetate, initiates the formation of the three enzymes. Within 16 h, the specific activities of these enzymes increase about 140, 120 and 70-fold, respectively. Glucose-6-phosphate dehydrogenase activity was not altered. When the yeast was grown anaerobically, but with a supplement of an unsaturated fatty acid in the medium, synthesis of the three enzymes was much faster and the specific activities after 16 h of derepression were considerably higher. A relationship exists between the number of double bonds in the unsaturated fatty acid molecule and its capability to stimulate enzyme synthesis: linolenic acid is more effective than linoleic acid, which, in turn, is much more effective than oleic acid. Increasing periods of aeration with glucose of anaerobically grown cells prior to derepression results in an increasing stimulation of enzyme synthesis on subsequent derepression. Anaerobic incubation of yeast in the presence of an unsaturated fatty acid in advance to derepression also increased the velocity of enzyme formation. It is suggested that during the aeration period with glucose and during anaerobic incubation with an unsaturated fatty acid a more active protein synthesizing apparatus was formed.  相似文献   

15.
Upon incubation with human leukocytes, [1-14C] linoleic acid is almost exclusively transformed into 13-hydroxy-9Z, 11E-octadecadienoic acid (13-HODE) if the linoleic acid concentration is lower than 50 microM. Identification of 13-HODE was done by GLC-MS at the level of its methyl ester, trimethylsilyl ether and by comparison with authentic 13-HODE in two different HPLC systems. Analysis of the products by chiral phase HPLC shows that 13(S)-hydroxy-9Z, 11E-octadecadienoic acid is by far the major metabolite formed by human leukocytes. Comparison of reactions performed with intact or lyzed cells suggests that the formation of 13(S)-HODE by human leukocytes occurs in two steps, a dioxygenation catalyzed by a 15-lipoxygenase and a reduction of intermediate 13-HPODE by a glutathione-dependent peroxidase.  相似文献   

16.
The biosynthetic relations between protoberberine-, benzo[C]phenanthridine- and B-secoprotoberberine type alkaloids were demonstrated by use of (±)-tetrahydrocoptisine-[8,14-3H HCl, (±)-tetrahydrocorysamine-[8,14-3H]HCl and corynoline-[6-3H]HCl in Corydalis incisa, and the following results were presented. (±)-Tetrahydrocoptisine was converted to corynoline, corydalic acid methyl ester and corydamine hydrochloride. (±)-Tetrahydrocorysamine was converted to corynoline and corydalic acid methyl ester. Evidence that N-methyl-3-[6′-(3′,4′-methylenedioxyphenethylalcohol)]-4-methyl-7,8-methylenedioxy-1,2,3,4-tetrahydroisoquinoline-[α-3H] HCl was incorporated into corynoline-[11-3H] indicates the occurrence of the ring fission at C6-N followed by linking ofthe C6 and C13 positions in (±)-tetrahydrocoptisine and (±)-tetrahydrocorysamine, and suggests the participation of one of two possible intermediates in the biosynthesis of these alkaloids.  相似文献   

17.
Transglutaminase catalyzes the formation of intermolecular and intramolecular ε-(γ-glutamyl)lysyl crosslinks in proteins. The study here examined the substrate effectiveness of soybean 7S and 11S proteins in the intermolecular-crosslinking reaction catalyzed by guinea pig liver transglutaminase.

Both 7S and 11S proteins could act as the substrate for the transglutaminase reaction. The reaction with 11S protein was faster than that of 7S protein. Analyses of the reaction products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that three main subunit groups of 7S protein and two acidic subunit groups of 11S protein were polymerized through the formation of intermolecular crosslinks by transglutaminase. Interestingly enough, no intermolecular crosslink was formed between the basic subunits of 11S protein. The possible significance of the intermolecular crosslinking catalyzed by transglutaminase is discussed, including the use of this enzyme reaction to improve the properties of food protein.  相似文献   

18.
The subunits of the 11 S storage protein from soybean cultivar CX635-1-1-1 were purified and characterized. Six polypeptides with acidic isoelectric points and four with basic isoelectric points were isolated from the purified storage protein. The acidic polypeptides had phenylalanine, leucine, isoleucine, and arginine at the NH2 termini, while the basic polypeptides all had glycine at the NH2 termini. Amino acid analysis indicated that certain acidic and basic polypeptides contained 3 to 6 times more methionine than the other polypeptides. Since the low nutritional quality of legume storage proteins is due to a deficiency in methionine, this observation will have significance in efforts to improve soybean quality. The purified polypeptides were further characterized by NH2-terminal sequence analysis. Considerable homology was found between the members of individual families of acidic and basic polypeptides, indicating that the members of each family arose from a common ancestral gene. This study showed that the glycinin polypeptide composition is more complex than previous reports indicated, and for the first time characterized the various polypeptides of the 11 S storage protein by structural analysis.  相似文献   

19.
Serine hydroxymethyltransferase, the first enzyme in the pathway for the interconversion of one carbon compounds was purified from mung bean seedlings by ammonium sulfate fractionation, DEAE-Sephadex, Blue Sepharose CL-6B affinity chromatography and gel filteration on Sephacryl S-200. The specific activity of the enzyme, 0.73 (u mol HCHO formed/min/mg protein) was 104 times larger than the highest value reported hitherto. Saturation of tetrahydrofolate was sigmoid, whereas with serine was hyperbolic, with nH values of 1.9 and 1.0 respectively. Reduced nicotinamide adenine dinucleotide, lysine and methionine decreased, whereas nicotinamide adenine dinucleotide, adenosine 5′-monophosphate and adenosine 5′-triphosphate increased the sigmoidicity. These results suggest that serine hydroxymethyltransferase from mung bean is a regulatory enzyme.  相似文献   

20.
An 11S seed globulin has been isolated from Phaseolus aureus and P. vulgaris by zonal isoelectric precipitation and the MWs of the constituent subunits determined. The protein of P. vulgaris occurs in the protein body fraction and its chemical composition, including the N-terminal amino acids and amino acid composition has been determined. The similarity between the 11S globulin of the two Phaseolus spp. and legumin from other leguines is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号