首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutant, strain M-6, capable of utilizing taurocyamine (2-guanidinoethanesulfonate) as a nitrogen source was isolated from the parent strain, Pseudomonas aeruginosa GB-4, a derivative of wild-type P. aeruginosa PAO1 lacking the ability to produce guanidinobutyrase (EC 3.5.3.7). 3-Guanidinopropionate amidinohydrolase (EC class 3.5.3), which acts slowly on taurocyamine, was induced effectively by only 3-guanidinopropionate in the parent strain, while the enzyme of strain M-6 was induced by taurocyanime, guanidinoacetate, 3-guanidinopropionate, 4-guanidinobutyrate, and guanidinosuccinate. Strain M-6 synthesized a slight amount of the enzyme constitutively. The enzyme partially purified from strain M-6 exhibited substrate specificity similar to that of the wild-type strain. The mutant could grow also on 4-guanidinobutyrate, unlike the parent strain. These results indicate that strain M-6 acquired the ability to grow on taurocyamine by virtue of a mutation at the regulatory gene for 3-guanidinopropionate amidinohydrolase, which led to alteration of the specificity of the regulatory protein.  相似文献   

2.
3.
4.
Pseudomonas aeruginosa, the rRNA group I type species of genus Pseudomonas, is a Gram-negative, aerobic bacterium responsible for serious infection in humans. P. aeruginosa pathogenicity has been associated with the production of several virulence factors, including cyanide. Here, the biochemical characterization of recombinant P. aeruginosa rhodanese (Pa RhdA), catalyzing the sulfur transfer from thiosulfate to a thiophilic acceptor, e.g., cyanide, is reported. Sequence homology analysis of Pa RhdA predicts the sulfur-transfer reaction to occur through persulfuration of the conserved catalytic Cys230 residue. Accordingly, the titration of active Pa RhdA with cyanide indicates the presence of one extra sulfur bound to the Cys230 Sgamma atom per active enzyme molecule. Values of K(m) for thiosulfate binding to Pa RhdA are 1.0 and 7.4mM at pH 7.3 and 8.6, respectively, and 25 degrees C. However, the value of K(m) for cyanide binding to Pa RhdA (=14 mM, at 25 degrees C) and the value of V(max) (=750 micromol min(-1)mg(-1), at 25 degrees C) for the Pa RhdA-catalyzed sulfur-transfer reaction are essentially pH- and substrate-independent. Therefore, the thiosulfate-dependent Pa RhdA persulfuration is favored at pH 7.3 (i.e., the cytosolic pH of the bacterial cell) rather than pH 8.6 (i.e., the standard pH for rhodanese activity assay). Within this pH range, conformational change(s) occur at the Pa RhdA active site during the catalytic cycle. As a whole, rhodanese may participate in multiple detoxification mechanisms protecting P. aeruginosa from endogenous and environmental cyanide.  相似文献   

5.
Lytic transglycosylases cleave the beta,1-->4 glycosidic linkages between the N-acetylmuramoyl (MurNAc) and N-acetylglucosaminyl (GlcNAc) residues of peptidoglycan with the concomitant formation of 1,6-anhydro-N-acetylmuramyl reaction products. The genes encoding two hypothetical lytic transglycosylases were identified in the genome of Pseudomonas aeruginosa PAO1 by a BLAST search using membrane-bound lytic transglycosylase B (MltB) from Escherichia coli as the query. The two genes were amplified by PCR and cloned as fusion proteins with C-terminal hexa-His sequences. Expression studies of the two genes in E. coli in the presence of [(3)H]palmitate resulted in the labeling of only one of the two enzymes. This enzyme, named MltB, was overexpressed to form insoluble inclusion bodies. Its gene was engineered to produce a truncated form of the enzyme lacking its N-terminal 17 residues which includes Cys17, the putative site of lipidation. This MltB derivative (named sMltB) was shown to not label with [(3)H]palmitate, and it was overexpressed in soluble form. The second, nonlabeled enzyme was overexpressed in soluble form and hence was named soluble lytic transglycosylase B (SltB). Both sMltB and SltB were purified to apparent homogeneity by a combination of affinity (Ni(2+)-NTA), cation-exchange (Mono S), and gel permeation (Superdex 75) chromatographies. The reaction products released by the two enzymes from purified, insoluble peptidoglycan were characterized by a novel high-performance anion-exchange chromatography (HPAEC) assay. Both enzymes produced the same three major soluble products which were identified as anhydromuropeptides based on ESI-MS analysis (cross-linked anhydrodisaccharide-tetrasaccharide, m/z obs 1824.9; anhydrodisaccharide-pentapeptide, m/z obs 922.2; and anhydrodisaccharide-tripeptide, m/z obs 851.3. The Michaelis-Menten kinetic parameters were also determined for the two enzymes using the same insoluble peptidoglycan substrate by aminosugar compositional analysis of soluble reaction products. At pH 5.8 and in the presence of 0.1% Triton, SltB was found to be more catalytically efficient, as reflected by its k(cat)/K(M) value, than sMltB.  相似文献   

6.
The dihaem cytochrome c4 from Pseudomonas aeruginosa has been crystallized in space group P6522 with cell dimensions a = b = 62.4 A?, c = 174.2 A?, and one molecule per asymmetric unit. Two heavy-atom derivatives, UO2(NO3)2 and K2Pt(NO2)4, which substitute at one and three sites, respectively, have allowed a low-resolution electron density map to be obtained. This shows clearly the two domains of the molecule.  相似文献   

7.
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic infections in the lungs of individuals with cystic fibrosis. It is intrinsically resistant to many antibiotics, and resistance is emerging rapidly to those drugs that currently remain efficacious. Therefore, there is a pressing need to identify new anti-pseudomonal drug targets. To this end, we have characterized the P. aeruginosa indole-3-glycerol phosphate synthase (PaIGPS). PaIGPS catalyzes the fifth reaction in the synthesis of tryptophan from chorismate??a reaction that is absent in mammals. PaIGPS was expressed heterologously in Escherichia coli, and purified with high yields. The purified enzyme is active over a broad pH range and has the highest turnover number of any characterized IGPS (k cat?=?11.1?±?0.1?s?1). These properties are likely to make PaIGPS useful in coupled assays for other enzymes in tryptophan biosynthesis. We have also shown that deleting the gene for PaIGPS reduces the fitness of P. aeruginosa strain PAO1 in synthetic cystic fibrosis sputum (relative fitness, W?=?0.89?±?0.02, P?=?0.001). This suggests that de novo tryptophan biosynthesis may play a role in the establishment and maintenance of P. aeruginosa infections, and therefore that PaIGPS is a potential target for the development of new anti-pseudomonal drugs.  相似文献   

8.
Nonconjugative R-plasmids pBS76 and pBS94 (Sm Su), pBS95 and pBS96 (Sm Su Ap) isolated from clinical strains of Pseudomonas aeruginosa and plasmids pKMR281-pKMN284 (Sm Su), pKMR285-pKMR286 (Sm Su Tc) isolated from clinical strains of enterobacteria have been studied. Restriction maps of these plasmids are presented in the paper with some of plasmid genes for antibiotic resistance localized on them. The resistance determinants of plasmids pBS95 and pBS96 are shown to be included in transposon Tn3612 analogous to Tn3. Plasmids pBS76, pBS94-96 are of the wide host range and belong to incompatibility group P4 (IncQ). Plasmids pKMR281-pKMR286 are mutually incompatible and share the conspicuous DNA homology. They are inherited only by enterobacteria and are compatible with IncQ plasmids but in contrast to them are mobilized by RP4 plasmid with lower frequency.  相似文献   

9.
10.
3-Hydroxybenzoate 6-hydroxylase from Pseudomonas aeruginosa   总被引:7,自引:0,他引:7  
An inducible 3-hydroxybenzoate 6-hydroxylase has been purified to homogeneity from Pseudomonas aeruginosa. It contains FAD as a prosthetic group. 3-Hydroxybenzoate is quantitatively hydroxylated to give gentisate with equimolar consumptions of NADH and O2. NADPH will substitute as an electron donor, and several aromatic analogues of 3-hydroxybenzoate stimulate reduced nucleotide oxidation by the enzyme with formation of both hydrogen peroxide and hydroxylated products. Of various analogues of 3-hydroxybenzoate, those substituted in 2,4,5 and 6-positions are competent substrates; partial uncoupling of electron flow from hydroxylation with concomitant formation of hydrogen peroxide and “gentisates” occurs. The “natural” product of the reaction, gentisate, is an effector in that it stimulates NADH oxidation with the formation of hydrogen peroxide. 3-hydroxybenzoate 6-hydroxylase thus resembles other flavoprotein hydroxylases in the general regulatory properties dictated by their aromatic substrates, pseudosubstrates or effectors.  相似文献   

11.
12.
A new strain of bacteriophage, phage 95, specific to Pseudomonas aeruginosa and Ps. schuylkilliensis was isolated. It has been shown that the phage induces a lytic enzyme which hydrolyzes peptide bond between l-alanine and d-glutamic acid in the peptidoglycan of cell wall.

Here the characteristics of phage 95 are described. It possesses a hexagonal head of 650Å, a contractile tail of 1150Å and spike with fibers. Its DNA has a GC content of 48%, a density of 1.700 g · cm?3 and Tm of 87.7°C. Photoreactivation was observed. Latent period is 20 min and burst size is 50. The phage is stable between pH 5 and 7.5, and unstable above 55°C. Culture condition and 300 liter scale cultivation are also presented.  相似文献   

13.
Many Gram-negative bacteria release membrane vesicles (MVs), but their phospholipid properties are poorly understood. Phosphatidylglycerol was present at high levels in MVs derived from Pseudomonas aeruginosa, but not in the cellular outer membrane. The ratio of stearic acid in MVs was high compared to that in the cellular outer membrane. These findings suggest that membrane rigidity is associated with MV biogenesis.  相似文献   

14.
15.
16.
17.
Chen Y-  Liu H  Zhu L-  Jin Y- 《Mikrobiologiia》2004,73(6):802-809
Catechol 2,3-dioxygenase (C23O), one of extradiol-type dioxygenases cleaving the aromatic C-C bond at the meta-position of dihydroxylated aromatic substrates, catalyzes the conversion of catechol to 2-hydroxymuconic semialdehyde. Based on curing experiment, PCR identification, and Southern hybridization, the gene responsible for C23O was localized on a 3.5-kb EcoRI/BamHI fragment and cloned from P. aeruginosa ZD 4-3 able to degrade both single and bicyclic compounds via the meta-cleavage pathway. A complete nucleotide sequence analysis of the C23O revealed that it had one ORF, which showed a strong amino acid sequence similarity to the known C23Os of mesophilic gram-negative bacteria. The alignment analysis indicated that distinct difference existed between the C23O in this study and the 2,3-dihydroxybiphenyl dioxygenases cleaving bicyclic aromatic compounds. The heterogenous expression of the pheB gene in Escherichia coli BL21(DE3) demonstrated that this C23O possessed a meta-cleavage activity.  相似文献   

18.
19.
Bacteriophage PO4 has been found to depend on the presence of pili for the infection of its host organism, Pseudomonas aeruginosa. Unlike other pilus phages, which either contain RNA and are "spherical" or contain single-stranded DNA and are filamentous, PO4 has a head and a long noncontractile tail. This paper describes its basic characters, and a quantitative study is made of its adsorption to exponential-phase cells of piliated and nonpiliated strains of P. aeruginosa. PO4 is found to contain double-stranded DNA and appears to be virulent towards its two host strains.  相似文献   

20.
A bacterial isolate, Pseudomonas aeruginosa 3mT, exhibited the ability to degrade high concentrations of 3-chlorobenzoate (3-CBA, 8 g l-1) and 4-chlorobenzoate (4-CBA 12 g l-1) (Ajithkumar 1998). In this study, by delineating the initial biochemical steps involved in the degradation of these compounds, we investigated how this strain can do so well. Resting cells, permeabilised cells as well as cell-free extracts failed to dechlorinate both 3-CBA and 4-CBA under anaerobic conditions, whereas the former two readily degraded both compounds under aerobic conditions. Accumulation of any intermediary metabolite was not observed during growth as well as reaction with resting cells under highly aerated conditions. However, on modification of reaction conditions, 3-chlorocatechol (3-CC) and 4-chlorocatechol (4-CC) accumulated in 3-CBA and 4-CBA flasks, respectively. Fairly high titres of pyrocatechase II (chlorocatechol 1,2-dioxygenase) activity were obtained in extracts of cells grown on 3-CBA and 4-CBA. Meta-pyrocatechase (catechol 2,3-dioxygenase) activity against4-CC and catechol, but not against 3-CC, was also detected in low titres. Accumulation of small amounts of 2-chloro-5-hydroxy muconic semialdehyde, the meta-cleavage product of 4-CC, was detected in the medium, when 4-CBA concentration was 4 mM or greater, indicating the presence of a minor meta-pathway in strain 3mT. However, 3-CBA exclusively, and more than 99% of 4-CBA were degraded through the formation of the respective chlorocatechol, via a modified ortho-pathway. This defies the traditional view that the microbes that follow chlorocatechol pathways are not very good degraders of chlorobenzoates. 4-Hydroxybenzoatewas readily (and 3-hydroxybenzoate to a lesser extent) degraded by the strain, through the formation of protocatechuate and gentisate, respectively, as intermediary dihydroxy metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号