首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of dilution rate on the production of biomass, ethanol, and invertase in an aerobic culture of Saccharomyces carlsbergensis was studied in a glucose-limited chemostat culture. A kinetic model was developed to analyze the biphasic growth of yeast on both the glucose remaining and the ethanol produced in the culture. The model assumes a double effect where glucose regulates the flux of glucose catabolism (respiration and aerobic fermentation) and the ethanol utilization in yeast cells. The model could successfully demonstrate the experimental results of a chemostat culture featuring the monotonic decrease of biomass concentration with an increase of dilution rate higher than 0.2 hr?1 as well as the maximum ethanol concentration at a particular dilution rate around 0.5 hr?1. Some supplementary data were collected from an ethanol-limited aerobic chemostat culture and a glucose-limited anaerobic chemostat culture to use in the model calculation. Some parametric constants of cell growth, ethanol production, and invertase formation were determined in batch cultures under aerobic and anaerobic states as summarized in a table in comparison with the chemostat data. Using the constants, a prediction of the optimal control of a glucose fed-batch yeast culture was conducted in connection with an experiment for harvesting a high yield of yeast cells with high invertase activity.  相似文献   

2.
A gram-negative bacterium strongly lytic toward living cells of the food yeast Saccharomyces fragilis was isolated by continuous-flow enrichment from compost. The organism was identified as a species of Arthrobacter. The extracellular lytic enzyme complex produced by this bacterium contained β-1,3-glucanase, mannan mannohydrolase, and proteolytic activities. The polysaccharases were inducible by whole yeast cells. In chemostat cultures on chemically defined media, synthesis of the polysaccharases was very slight and only detectable at dilution rates below 0.02 hr?1. Enzyme production in defined media was not solely dependent on growth rate but also was influenced by the growth limiting substrate and the culture history. The production of individual depolymerases and of the lytic activity was studied in batch and chemostat cultures containing yeast as the limiting substrate. The maximum specific growth rate of the Arthrobacter under these conditions was 0.22 hr?1. β-1,3-Glucanase and proteolytic activities were synthesized by exponentially growing bacteria but maximum lytic titers did not develop until the specific growth rate was declining, at which time mannan mannohydrolase syntheses was induced. In yeast limited chemostats polysaccharase syntheses were greatest at the lowest dilution rates examined, namely 0.02 hr?1. Further optimization of enzyme production was achieved by feeding the Arthrobacter culture to a second-stage chemostat. A comparison of lytic enzyme productivities in batch and chemostat cultures has been made.  相似文献   

3.
Using ball milled cellulose as the only carbon source Trichoderma viride was grown in a continuous flow culture at pH = 5.0 and T = 30°C. Steady-state values for cell protein, cellulose, and cellulase for different substrate concentrations (4–11 g/liter) and dilution rates (0.033–0.080 hr?1) were obtained. Under steady-state conditions, 50–75% of the cellulose was consumed indicating a critical dilution rate on 0.17 hr?1. Cellulase activity (U/ml) in the fermentation broth increased slightly with increasing substrate concentration and decreased with increasing dilution rate, while the specific cellulase productivity (U/mg cell protein·hr) was fairly independent of the dilution rate, with a maximum around D = 0.05 hr?1. Following step changes in substrate concentration and dilution rate, new steady-state values were reached after three to five residence times (cell protein and cellulose) and four to six residence times (celullase activity).  相似文献   

4.
The effects of photon flux density (PFD) and spectral quality on biomass, pigment content and composition, and the photosynthetic activity of Oscillatoria agardhii Gomont were investigated in steady-state populations. For alterations of PFD, chemostat populations were exposed to 50, 130 and 230 μmol photons·m?2·s?1 of photosynthetic active radiation (PAR). Decreases in biomass, chlorophyll a (Chl a) and c-phycocyanin (CPC) contents, and CPC: Chl a and CPC: carotenoid content was not altered. Increases in the relative abundances of myxoxanthophyll and zeaxanthin and deceases in the relative abundances of echinenone and β-carotene within the carotenoid pigments coincided with increasing PFD. Increases in Chl a-specific photosynthetic rates and maxima and decreases in biomass-specific photosynthetic rates and maxima with increasing PFD were attributed to increased light harvesting by carotenoids per unit Chl a and reduction in total pigment content, respectively. Responses to spectral quality were tested by exposing chemostat populations to a gradient of spectral transmissions at 50 μmol photons·m?2·s?1 PAR. Biomass differences among populations were likely attributable to the distinct absorption of the PAR spectrum by Chl a, CPC, and carotenoids. Although pigment contents were not altered by spectral quality, relative abundances of zeaxanthin and echinenone in the carotenoid pigments increased in populations exposed to high-wavelength PAR. The population adapted to green light possessed a greater photosynthetic maximum than populations adapted to other spectral qualities.  相似文献   

5.
Fusarium moniliforme was grown on a carob aqueous extract in a chemostat for fungal protein production. The substrate was adjusted to provide 0.5% carob sugars supplemented with inorganic salts. The dilution rate varied from 0.086 to 0.227 hr?1 under constant conditions of temperature (30°C), pH (4.5), and oxygen saturation (60–80%). A yield of 0.709 g dry mycelium/g consumed carob sugar and a productivity value of 0.687 g dry mycelium/liter hr?1 were obtained at μ = 0.205 hr?1. The maintenance coefficient was 0.077 g carob sugar/g dry mycelium hr?1. While the carbohydrate and purine content of dry mycelium increased at μ values from 0.114 to 0.205 hr?1 both true (Lowry) and crude (N × 6.25) protein contents decreased at the same μ range. Maximum values of 36.3% true and 47.9% crude protein of dry mycelium were obtained at μ = 0.114 hr?1, whereas a minimum purine content of 99.8 μmol/g corresponding to 6.42% nucleic acids was recorded at μ = 0.086 hr?1. It was concluded that a continuous fermentation of carob aqueous extract using F. moniliforme should be operated at growth rates of approximately 0.205 hr?1 in order to maximize protein production.  相似文献   

6.
Physical-chemical conditions, phytoplankton productivity, community structure and productivity of the macroinvertebrate benthic community were determined during 1976–77 in a subtropical reservoir. Physical-chemical results revealed high nitrate and phosphate concentrations with highest values in the riverine segment. Large phytoplankton populations were present during most of the year. Phytoplankton productivity was high, producing an annual mean of 87 mg C · m−3 · h−1 (12 hours light day). High turbidity in the riverine segment limited phytoplankton productivity during winter and spring. Macrobenthos was dominated by chironomids (Chironomus, Procladius, Coelotanypus and Tanypus) and oligochaetes (Limnodrilus). The annual mean benthic population was estimated at 1,626 · m−2 with a mean dry weight of 0.66 g · m−2. Mean benthic species diversity was 1.80. A lacustrine-riverine community gradient was revealed. Benthic productivity was 6.8 g · m−2 · yr−1 (dry weight) with a P: B ratio of 10. A low correlation was observed between benthic and phytoplankton productivity, and between phytoplankton standing crop and benthic macroinvertebrate numbers throughout the reservoir. Algal food supplies had little impact on the benthic community which was composed predominately of species which fed mostly on organic detritus. Stressful conditions caused by low dissolved oxygen concentrations probably inhibited development of the benthic community throughout the reservoir during summer months, while high sedimentation rates limited development in the head waters.  相似文献   

7.
The effect of a limited supply of methane and oxygen on growth of Methylomonas flagellata was analyzed in chemostat culture. A significant decrease in YCH4 was observed under oxygen-limitation. Accumulation of formaldehyde is supposed to cause a decrease of YCH4. A low level of formaldehyde oxidizing activity in cells grown under oxygen-limited steady-states suggests that formaldehyde dehydrogenase is repressed under oxygen deficiency. In spite of the suppression of respiration, methane oxidation progressed independently under oxygen-limitation. These facts support the idea that methanol oxidation couples with methane oxidation (a mono-oxygenase system) in this microorganism.  相似文献   

8.
Inoculum size has been found to affect significantly the maximum attainable specific growth rate during batch cultivation ofCandida utilis. Lower inoculum size resulted in an increased growth rate and relatively longer lag. The culture is found to be most active in the beginning of the exponential phase as regards its RNA synthesis rate. Batch data were used for predicting the conditions of the yeast population in single-stage continuous culture system. Predicted and the experimental values showed a reasonable agreement. In single-stage chemostat the physiology of the yeast was studied on the basis RNA, DNA and protein synthesis rates at various growth rates. The results indicate that the productivity of cells and the rate of synthesis of macromolecules is highest at the dilution rate values of 0.33 to 0.35 hr−1. In order to attain so-called unrestricted conditions of growth a pluristage pluristream continuous system was employed. It is assumed that under such conditions the specific growth rate and the synthetic activity of yeasts may reach its maximum on a given medium. The results presented do not show such conditions of growth under the experimental conditions employed (D 1=0.35 hr−1 andD 2=0.2 to 1.7 hr−1) withCandida utilis cultivated on beet molasses medium. Second stage of a two-stage two-stream continuous system is constantly fed with the cells from the foregoing stage; this category of cells on entering the new conditions of the second stage is expected to show some adaptation period. Experiments are reported to this effect.  相似文献   

9.
The foliar uptake and transport rates of formaldehyde as well as the abilities of leaf extracts to breakdown formaldehyde were investigated to discuss the formaldehyde removal efficiency and mechanism by five species of plants from air. Results showed that formaldehyde could be transported from air via leaves and roots to rhizosphere water. When exposed to 0.56 mg·m?3 formaldehyde, the formaldehyde removal rate ranged from 18.64 to 38.47 μg·h?1g?1 FW (fresh weight). According to the mass balance in the air–plant–water system, the main mechanism of the formaldehyde loss was its breakdown in plant tissues caused by both enzymatic reaction and redox reaction. Higher oxidation potentials of the leaf-extracts of Wedelia chinensis and Desmodium motorium corresponded well to higher abilities to breakdown added formaldehyde than other plants. Based on the different abilities of fresh and boiled leaf-extracts to dissipate formaldehyde, the enzymatic reaction in Chenopodium album L. was the dominant mechanism while the redox reaction in Kochia scoparia (L.) Schrad. and Silene conoidea L. was the main formaldehyde breakdown mechanism when exposed to low-level formaldehyde in air. The redox mechanism suggested that the formaldehyde removal may be increased by an increasing level of reactive oxygen species (ROS) induced by the environmental stress.  相似文献   

10.
Cells of Candida utilis grown in a single-stage chemostat at D = 0.05, 0.1, 0.25, and 0.35 hr?l were separated into a fraction of scar-bearing mother cells and a fraction of scar-free daughter cells. The scar-free cells were transferred into small batch cultures where the length of the maturation phase, changes in length and width of cells, specific growth rate, and specific rate of RNA and protein synthesis were examined for 5 hr. The daughter cells grown at D = 0.05 hr?1 were very small at the moment of separation from the mother cells (about one-third of the mother cell). Their maturation phase (in a batch culture), at the beginning of which they attain the specific growth rate approaching the μmax of the strain used, lasts for 3 hr. On the other hand, daughter cells grown at D = 0.35 hr?1 are almost the same size as the mother cells at the moment of separation. After transfer to a batch culture they begin to bud almost immediately. Similarly, in their other morphological and physiological parameters they differ strikingly from immature daughter cells which are formed at low specific growth rates. The importance of these differences from the point of view of mathematical modeling of growth processes is discussed.  相似文献   

11.
We examined whether developing cotyledons of soybean seed had photosynthetic activities. The cotyledons evolved oxygen under illumination and the activity was inhibited by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea. The rate of oxygen evolution decreased during the development of seeds; about 30μ miol O2 · mg chlorophyll-1 · hr-1 at the early developing stage and about 10μ miol O2-mg chlorophyll-1 · hr-1 at the late developing stage. The rate of oxygen uptake remained at an almost constant level of 40^mol 02-mg chlorophyll-1 · hr-1 throughout the development. Photosynthetic 14CO2-fixation by the cotyledon was observed. Ribulose bisphosphate carboxylase was immunochemically detected in the developing cotyledons. These results show that functional photosynthetic apparatus is present in the developing cotyledons of soybean seeds.  相似文献   

12.
The long term shear effects on a hybridoma cell line were studied by the simulation of a hollow fiber perfusion system. Various mechanical/environmental stress conditions were applied and steady state concentrations of live, dead and lysed cells were measured or calculated in a continuous culture. From mathematical modeling, it is shown that inclusion of a lysed cell index (LCI) renders a better fit to the material balance equation at steady state. The specific cell death rate increased with increasing shear force as expected only when the LCI was included. Without the inclusion of the LCI, the calculated specific cell growth rates are about 25–60% of the value when included. The results reported may lend some insight to design improvements since most perfusion devices add shear stresses to the cells in the reactor.List of Symbols b ml/hr continuous culture flow rate - D hr–1 dilution rate (b/V) - m g glucose/109 cells/hr specific maintenance coefficient - S 0 g/l feed substrate concentration - S g/l reactor substrate concentration - t hr time - V ml reactor volume - X + cells/ml live cell concentration - X cells/ml dead cell concentration - X 0 cells/ml lysed cell concentration - Y x/s 109 cells/g glucose cell/substrate yield coefficient - hr–1 specific growth rate - hr–1 specific death rate - hr–1 specific lysis rate - hr–1 specific lysis rate for simultaneous death and lysis  相似文献   

13.
This study describes the results of a hollow fibre membrane reactor with immobilized treated cells of Zymomonas mobilis which produced sorbitol and gluconic acid continuously from fructose and glucose respectively. A productivity of 10–20 g sorbitol · L-1 · h-1 and 10–20 gluconate · L-1 · h-1 (based on total bioreactor volume) from a feed of 100 g · L-1 each of glucose and fructose was possible at high dilution rates. Kinetic parameters describing the reaction rate of treated cells in batch reactors were used to analyse the performance of the hollow fibre membrane reactor employing significant convective mass transfer. No significant mass transfer limitation was apparent.  相似文献   

14.
Influence of culture conditions such as light, temperature and C/N ratio was studied on growth of Haematococcus pluvialis and astaxanthin production. Light had significant effect on astaxanthin production and it varied with its intensity and direction of illumination and effective culture ratio (ECR, volume of culture medium/volume of flask). A 6-fold increase in astaxanthin production (37 mg/L) was achieved with 5.1468·107 erg·m−2·s−1 light intensity (high light, HL) at effective culture ratio of 0.13 compared to that at 0.52 ECR, while the difference in the astaxanthin production was less than 2 — fold between the effective culture ratios at 1.6175·107 erg·m−2·s−1 light intensity (low light, LL). Multidirectional (three-directional) light illumination considerably enhanced the astaxanthin production (4-fold) compared to unidirectional illumination. Cell count was high at low temperature (25 °C) while astaxanthin content was high at 35 °C in both autotrophic and heterotrophic media. In a heterotrophic medium at low C/N ratio H. pluvialis growth was higher with prolonged vegetative phase, while high C/N ratio favoured early encystment and higher astaxanthin formation.  相似文献   

15.
Two replicate experiments were conducted to investigate the effect of light intensity on the growth and nutrient uptake of Skeletonema costatum (Grev.) Cleve in silicate-limited continuous culture. Each experiment began with 4 identical chemostat cultures of S. costatum growing at the normal laboratory light (0.14 ly · min?1, continuous illumination) under strong silicate limitation. Screens were placed over 3 cultures reducing them to light intensities of 0.042, 0.021 and 0.0018 ly · min?1. Based on growth rules, nutrient uptake rates, cell morphology and chemical composition, the cultures receiving 0.021, and 0.0018 ly · min?1 appeared to he light-limited, whereas the culture receiving 0.14 ly.  相似文献   

16.
The kinetics of population growth and death were investigated in Anabaena flos-aquae (Lyngb.) Bréb grown at light intensities ranging from limitation to photoinhibition (5 W·m−2 to 160 W·m−2) in a nutrient-replete turbidostat. Steady-state growth rate (μ, or dilution rate, D) increased with light intensity from 0.44·day−1 at a light intensity of 5 W·m−2 to 0.99·day−1 at 20 W·m−2 and started to decrease above about 22 W·m−2, reaching 0.56·day−1 at 160 W·m−2. The Haldane function of enzyme inhibition fit the growth data poorly, largely because of the unusually narrow range of saturation intensity. However, it produced a good fit (P < 0.001) for growth under photoinhibition. Anabaena flos-aquae died at different specific death rates (γ) below and above the saturation intensity. When calculated as the slope of a vx−1 and D−1 plot, where vx and D are cell viability (or live cell fraction) and dilution rate, respectively; γ was 0.047·day−1 in the range of light limitation and 0.103·day−1 under photoinhibition. Live vegetative cells and heterocysts, either in numbers or as a percentage of the total cells, showed a peak at the saturation intensity and decreased at lower and higher intensities. The ratio of live heterocysts to live vegetative cells increased with intensity when light was limiting but decreased when light was supersaturating. In cells growing at the same growth rate, the ratio was significantly lower under light inhibition than under subsaturation and the cell N:C ratio was also lower under inhibition. The steady-state rate of dissolved organic carbon (DOC) production increased with light intensity. However, its production as a percentage of the total C fixation was lowest at the optimum intensity and increased as the irradiance decreased or increased. The rate and percentage was significantly higher under photoinhibition than limitation in cells growing at the same growth rate. About 22% of the total fixed carbon was released as DOC at the highest light intensity. No correlation was found between the number of dead cells and DOC.  相似文献   

17.
Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different carbon sources in batch and carbon-limited chemostat cultivations were evaluated. In batch cultivations, the highest total product yield coefficient (Yxp total), given as the sum of extracellular and intracellular yields, was obtained during growth on glucose for the transformant strain NW297-24 (5.7±0.65 KU/g DW), whereas the highest total product yield coefficient was obtained during growth on maltose for the transformant strain NW297-14 (6.3±0.02 KU/g DW). Both transformants were evaluated in glucose-limited chemostat cultures. Strain NW297-14 was found to be the best producer and was thus employed for further analysis of the influence of carbon source in chemostat cultures. Here, the highest total specific lipase productivity (rp total, the sum of extracellular and intracellular lipase productivity) was found to be 1.60±0.81 KU/g DW/h in maltose-limited chemostats at a dilution rate of 0.08 h–1, compared with a total specific lipase productivity of 1.10±0.41 KU/g DW/h in glucose-limited chemostats. At the highest specific productivity obtained in this study, the heterologous enzyme accounted for about 1% of all cellular protein being produced by the cells, which shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall.  相似文献   

18.
Summary The present chemostat culture studies were performed in a partial gas recycle system using Clostridium acetobutylicum ATCC 824. Initiation of chemostat cultures at two different levels of vitamins has demonstrated a more than 3 fold improvement in the solvent productivity. The production of extracellular autobacteriocin was increased markedly, when strict anaerobic conditions of the feed vessel were not maintained. When pH was regulated at 4.4, very little variation was seen in the concentration of acids. The duration of solvent production was reduced significantly when NH4OH was replaced by NaOH for pH regulation, whereas a marked increase in the production of extracellular autobacteriocin was observed. In the optimised medium conditions, a solvent productivity of 2.09 g l-1 h-1 (highest ever) could be obtained in the synthetic medium.  相似文献   

19.
The effects of irradiance on the biochemical composition of the prymnesiophyte microalga, Isochrysis sp. (Parke; clone T-ISO), a popular species for mariculture, were examined. Cultures were grown under a 12:12 h light: dark (L:D) regime at five irradiances ranging from 50 to 1000 μE·m 2·s?1 and harvested at late-logarithmic phase for analysis of biochemical composition. Gross composition varied aver the range of irradiances. The highest levels of protein were present in cells from cultures grown at 100 and 250 μE·m 3·s1, and minimum levels of carbohydrate and lipid occurred at 50 μE·m?2·s?1. Because the cell dry weight was reduced at lower irradiances, different trends were evident when results were expressed as percentage of dry weights. Protein percentages were highest at Wand 100 μE·m?2·s?1 and carbohydrate at 100 μE·m?2·s?1. The composition of amino acids did not differ over the range of irradiances. Glutamate and aspartate were always present in high proportions (9.0–13.5%); histidine. methionine, tryptophan, cystine, and hydroxy-proline were minor constituents (0.0–2.6%). Glucose was the predominant sugar in all cultures, ranging from 23.0% (50 μE·m?2·s?1) to 45.0% (100 μE·m?2·s?1) of total polysaccharide. No correlation was found between the proportion of any of the sugars and irradiance. The proportions of the lipid class components and fatty acids showed little change with irradiance. The main fatty acids were 14:0, 16:0, 16:1(n-7), 18:1(n-9), 18:3(n-3). 18:4(n-3), 18:5(n-3), and 22:6(n-3). Proportions of 22: 6(n-3) increased, whereas l8:3(n-3). 18:3(n-6). and 18:4(n-3) decreased, with increasing irradiance. Pigment concentrations were highest in cultures grown at 50 μE·m?2·s?1, except for fucoxanthin and diadinoxanthin (100 μE·m?2·s?1). The concentrations of accessory pigments correlated with chlorophyll a, which decreased in concentration with increasing irradiance. On the basts of biochemical composition, an irradiance of 100 μE·m?1·s?1 (12:12 h L:D cycle)for the culture of Isochrysis sp. (clone T-ISO) may provide optimal nutritional value for maricultured animals, although feeding trials are now necessary to substantiate this.  相似文献   

20.
贺辉  彭其安 《广西植物》2019,39(6):737-742
该研究采用密封舱法模拟室内甲醛污染环境(熏蒸箱内甲醛浓度设置为0.1~0.5 mg·m~(-3),熏气时间12 h),对6种常见室内观赏植物进行甲醛熏蒸实验,测定了植物对甲醛的吸收效率、叶面伤害指数及过氧化物酶(POD)等指标。结果表明:这6种常见观赏植物对甲醛均具较好的净化效果,甲醛熏蒸浓度为0.1~0.3 mg·m~(-3),白鹤芋对甲醛的净化效果最好;熏蒸浓度0.5 mg·m~(-3),绿萝和吊兰具有较好的净化和抗逆性能;铁线蕨对甲醛的耐受力较弱,适合作为室内甲醛污染的指示性植物。几种受试植物的POD酶与甲醛吸收率呈显著正相关关系(P0.05),表明植物POD活力变化是受甲醛胁迫后的主要抗逆应答机制之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号