首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Brevibacterium flavum, prephenate dehydratase in the phenylalanine specific biosynthetic pathway was strongly inhibited by phenylalanine and activated by tyrosine. Furthermore. the inhibition by phenylalanine was completely reversed by tyrosine. Inhibition by tyrosine of prephenate dehydrogenase in the tyrosine specific pathway was very weak. Overall regulation mechanism of the aromatic amino acid biosynthesis in B. flavum was proposed on the bases of these results and the previous findings on 3-deoxy-D-arabino-heptulosonate-7- phosphate synthetase(DAHP synthetase*) of the common pathway and on anthranilate synthetase of the tryptophan specific pathway. Two types of m-fluorophenylalanine(mFP) resistant mutants which accumulated phenylalanine alone or both phenylalanine and tyrosine, respectively, were derived. The accumulation in the former mutants was inhibited by tyrosine, but that in the latter was affected neither by tyrosine nor by phenylalanine. DAHP synthetase of the latter mutants had been desensitized from the synergistic feedback inhibition by tyrosine and phenylalanine, while prephenate dehydratase of the former mutants had been desensitized in the feedback inhibition by phenylalanine. Tyrosine auxotroph accumulated phenylalanine under tyrosine limitation and its accumulation was inhibited by the excessive addition of tyrosine. Phenylalanine auxotroph accumulated tyrosine under phenylalanine limitation and its accumulation was inhibited by the excessive addition of phenylalanine. These results in vivo strongly supported the proposed regulation mechanism in which synthesis of phenylalanine in preference to tyrosine was assumed.  相似文献   

2.
The incorporation of [3H]phenylalanine, [3H]tyrosine, and [3H]tryptophan into protein and amino acyl–tRNA was studied in cell-free preparations from rat brain. Tyrosine and tryptophan inhibited the incorporation of phenylalanine into protein, and tyrosine inhibited the incorporation of phenylalanine and tryptophan into amino acyl–tRNAs. In most cases, homogentisate, phenylpyruvate, and phenyllactate inhibited the incorporation of phenylalanine, tyrosine, and tryptophan into protein and amino acyl–tRNAs, and the incorporation of phenylalanine into polyphenylalanine. All other protein amino acids, and phenylacetate, salicylate, and benzoate were wholly ineffectual. The results suggest that the formation of amino acyl–tRNAs may have been the step which was affected most by the inhibitors. The incorporation data at different concentrations of the aromatic amino acids were fitted to the simple Michaelis equation. Homogentisate and phenylpyruvate generally tended to reduce both Km and V in the incorporation of aromatic amino acids into protein and amino acyl-tRNAs, even if V decreased more than Km.  相似文献   

3.
A number of tryptophan plus tyrosine double auxotrophic mutants isolated by the NTG treatment of a glutamate producing strain of Arthrobacter globiformis were found to excrete phenylalanine in a mineral salt medium. By controlling the pH of the medium to near neutrality, the active growth period could be extended up to 72 h and more phenylalanine was accumulated compared to the unregulated culture where the growth period took up to 48 h. Under optimum culture conditions, the best double auxotroph (TT-39) produced 3 g phenylalanine/l. Further improvement of phenylalanine production has been achieved by the step-by-step isolation of a mutant resistant to the phenylalanine analogues p-fluorophenylalanine (PFP) and β-2-thienylalanine (TA) from the TT-39 strain. Under optimum culture conditions, the best double auxotrophic analogue resistant mutant TT-39 PTr-21 yielded 8.7 g/l phenylalanine.  相似文献   

4.
Regulation of phenylalanine biosynthesis in Rhodotorula glutinis.   总被引:1,自引:1,他引:0       下载免费PDF全文
The phenylalanine biosynthetic pathway in the yeast Rhodotorula glutinis was examined, and the following results were obtained. (i) 3-Deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase in crude extracts was partially inhibited by tyrosine, tryptophan, or phenylalanine. In the presence of all three aromatic amino acids an additive pattern of enzyme inhibition was observed, suggesting the existence of three differentially regulated species of DAHP synthase. Two distinctly regulated isozymes inhibited by tyrosine or tryptophan and designated DAHP synthase-Tyr and DAHP synthase-Trp, respectively, were resolved by DEAE-Sephacel chromatography, along with a third labile activity inhibited by phenylalanine tentatively identified as DAHP synthase-Phe. The tyrosine and tryptophan isozymes were relatively stable and were inhibited 80 and 90% by 50 microM of the respective amino acids. DAHP synthase-Phe, however, proved to be an extremely labile activity, thereby preventing any detailed regulatory studies on the partially purified enzyme. (ii) Two species of chorismate mutase, designated CMI and CMII, were resolved in the same chromatographic step. The activity of CMI was inhibited by tyrosine and stimulated by tryptophan, whereas CMII appeared to be unregulated. (iii) Single species of prephenate dehydratase and phenylpyruvate aminotransferase were observed. Interestingly, the branch-point enzyme prephenate dehydratase was not inhibited by phenylalanine or affected by tyrosine, tryptophan, or both. (iv) The only site for control of phenylalanine biosynthesis appeared to be DAHP synthase-Phe. This is apparently sufficient since a spontaneous mutant, designated FP9, resistant to the growth-inhibitory phenylalanine analog p-fluorophenylalanine contained a feedback-resistant DAHP synthase-Phe and cross-fed a phenylalanine auxotroph of Bacillus subtilis.  相似文献   

5.
Corynebacterium glutamicum mutants carrying both auxotrophy and histidine analog-resistance were derived by a mutagenic treatment, and their histidine productivity was compared with that of a triazolealanine (TRA)-resistant histidine producer, C. glutamicum KY-10260. As a result, a leucine auxotrophic TRA-resistant mutant, Rα-88 was selected out of 164 auxotrophic derivatives of KY-10260. It produced histidine at a distinctly higher concentration than the parent strain under every condition tested. The concentration reached 11 mg/ml or 5.8% (w/w) of the initial sugar. Addition of an excessive amount of leucine to the medium inhibited the histidine production together with the by-production of valine by this mutant. Thiazolealanine-resistant mutants derived from a tyrosine auxotroph, a phenylalanine auxotroph and a tryptophan auxotroph gave the same or lower production in comparison with KY-10260.  相似文献   

6.
Amino acid transport was studied in three neuroblastoma clones, N-TD6, which synthesizes norepinephrine, N-T16, which synthesizes small amounts of serotonin, and N-S20Y, which synthesizes acetylcholine. All three clones exhibited high-affinity saturable transport systems for tyrosine, phenylalanine, tryptophan and glycine as well as systems unsaturated at amino acid concentrations of 1 mM in the external medium. Tyrosine, phenylalanine and tryptophan enter all three clones by rapidly exchanging transport systems which appear to be relatively insensitive to lowered external [Na+] or to the presence of 2,4-dinitrophenol (DNP). Glycine uptake was slower and was much more sensitive to lowered external [Na+] and to the presence of DNP in the medium. Glycine transport in N-T16 cells was decreased more markedly at low temperature than was transport of the three aromatic amino acids. Km and Vmax values found for saturable transport of tyrosine, phenylalanine and tryptophan were sufficiently low to suggest that, if similar amino acid transport systems exist in neuronal membranes, and if amino acid levels in brain extracellular fluid are similar to levels in plasma, such systems may serve, in conjunction with transport systems in cerebral capillaries, to limit the entry of amino acids into brain cells when blood amino levels are near the normal physiological range.  相似文献   

7.
Tryptophan was found to be degraded in Saccharomyces cerevisiae mainly to tryptophol. Upon chromatography on DEAE-cellulose two aminotransferases were identified: Aromatic aminotransferase I was constitutively synthesized and was active in vitro with tryptophan, phenylalanine or tyrosine as amino donors and pyruvate, phenylpyruvate or 2-oxoglutarate as amino acceptors. The enzyme was six times less active with and had a twenty times lower affinity for tryptophan (K m=6 mM) than phenylalanine or tyrosine. It was postulated thus that aromatic aminotransferase I is involved in vivo in the last step of tyrosine and phenylalanine biosynthesis. Aromatic aminotransferase II was inducible with tryptophan but also with the other two aromatic amino acids either alone or in combinations. With tryptophan as amino donor the enzyme was most active with phenylpyruvate and not active with 2-oxoglutarate as amino acceptor; its affinity for tryptophan was similar as for the other aromatic amino acids (K m=0.2–0.4 mM). Aromatic aminotransferase II was postulated to be involved in vivo mainly in the degradation of tryptophan, but may play also a role in the degradation of the other aromatic amino acids.A mutant strain defective in the aromatic aminotransferase II (aat2) was isolated and its influence on tryptophan accumulation and pool was studied. In combination with mutations trp2 fbr, aro7 and cdr1-1, mutation aat2 led to a threefold increase of the tryptophan pool as compared to a strain with an intact aromatic aminotransferase II.  相似文献   

8.
The kinetics of the incorporation into protein of [3H]phenylalanine, [3H]tyrosine and [3H]tryptophan were studied with homogenates prepared from whole brain of 1-, 7-, 21- and 60-day-old rats. The maximal velocities (Vmax)of incorporation of phenylalanine and tyrosine decreased and the apparent Michaelis-constants (Km) for all three amino acids increased with increasing age of the rats. Tyrosine had the smallest and tryptophan the largest Km values in all age groups. Phenylalanine competitively inhibited the incorporation of tyrosine, but tyrosine inhibited non-competitively the incorporation of phenylalanine. Tryptophan inhibited competitively the incorporation of phenylalanine, but at least partially non-competitively the incorporation of tyrosine. Phenylalanine and tyrosine did not significantly affect the incorporation of tryptophan in homogenates from 60-day-old rats. In 1-day-old rats only a very large excess of phenylalanine or tyrosine inhibited detectably. The Ki for phenylalanine in the incorporation of tyrosine was significantly smaller in 1- than in 60-day-old rats. In every case the inhibition presumably occurred at a single rate-limiting step in the complicated process of incorporation of amino acids into protein.  相似文献   

9.
Mutant strains of Anabaena variabilis which are resistant to the tryptophan analogue, 6-fluorotryptophan, liberated a wide range of amino acids although none liberated tryptophan in detectable quantities. Four strains (FT-7, FT-8, FT-9, FT-10) produced predominantly alanine together with small amounts of phenylalamine and tyrosine, strain FT-2 liberated mainly phenylalanine and tyrosine and strain FT-6 liberated mainly glutamate, NH 4 + and several unidentified ninhydrin-positive compounds. Two forms of 3-deoxy-D-arbinoheptulosonate 7-phosphate (DAHP) synthase were identified in the parent strain, a tyrosine-sensitive form and a phenylalanine-sensitive form. In strains FT-2 and FT-6 the phenylalanine-sensitive enzyme was not detected and in strain FT-7 it was apparently deregulated with respect to inhibition by phenylalanine. No deregulation of anthranilate synthase was observed but mutant strains were found to have higher specific activities of this enzyme than the parent strain.Abbreviations chla chlorophyll a - 6-FT 6-fluorotryptophan - DAHP 3-deoxy-D-arabinoheptulosonate 7-phosphate - PEP phosphoenolpyruvate  相似文献   

10.
Tryptophan enhanced the growth of Ochromonas malhamensis at concentrations up to 0.4 mg/ml; higher concentrations inhibited, the growth inhibition being reversible by tyrosine and adenine. The presence of a tryptophan synthetase system in vitro was demonstrated. Tyrosine and phenylalanine stimulated the activity of this enzyme. The uptake of exogenous tryptophan was accompanied by an increase in the free tryptophan pool which in turn suppressed the tryptophan synthetase system, thus pointing to a controlled mechanism. Incorporation of tryptophan in the growth medium enhanced the biosynthesis of folate-active compounds. An elucidation of the mode of action of tryptophan is attempted on the basis of known metabolic pathways.  相似文献   

11.
The regulatory properties of chorismate mutase, its cellular localization and isoenzyme pattern were investigated in 23 yeast species. All yeasts contained only a single form of the enzyme, which is localized exclusively in the cytosol. The enzyme activity from all sources was activated 3-(Rhodotorula aurantiaca) to 185-fold (Candida maltosa) by tryptophan. The tryphtophan concentration, which was necessary to obtain half maximum velocity was determined to be between 2 (Pichia guilliermondii) and 95 M (Yarrowia lipolytica). Ten yeast species possessed an enzyme that was inhibited by both phenylalanine and tyrosine. The chorismate mutase from four strains was inhibited only by tyrosine and the enzyme from two species was inhibited by phenylalanine alone. The enzyme inhibition by phenylalanine and tyrosine was completely reversed by tryptophan. Six enzyme sources were not inhibited and theY. lipolytica chorismate mutase was slightly activated by both amino acids.  相似文献   

12.
Effect of glyphosate on carrot and tobacco cells   总被引:7,自引:7,他引:0       下载免费PDF全文
The growth of suspension-cultured carrot (Daucus carota L.) and tobacco (Nicotiana tabacum L. cv. Xanthi) cells was inhibited by glyphosate (N-[phosphonomethyl]glycine). This inhibition was reversed by adding combinations of phenylalanine, tyrosine, and tryptophan or casein hydrolysate. Casein hydrolysate and phenylalanine + tyrosine + tryptophan were the most effective treatments. Reversal of glyphosate-induced inhibition occurred only if the aromatic amino acids were added during the first 8 days of glyphosate incubation. Glyphosate uptake was not reduced when the aromatic amino acids or casein hydrolysate were added.  相似文献   

13.
Abstract Batch culture incubations were used to investigate the effects of pH (6.8 or 5.5) and carbohydrate (starch) availability on dissimilatory aromatic amino acid metabolism in human fecal bacteria. During growth on peptide mixtures, tyrosine and phenylalanine fermentations occurred optimally at pH 6.8, while individual metabolic reactions were inhibited by up to 80% in the presence of 10 g l−1 starch. Tryptophan metabolites were not detected in these experiments. When free amino acids replaced peptides, phenol production was increased during carbohydrate fermentation, although formation of p-cresol, another tyrosine metabolite was strongly inhibited. Phenylpropionate, which is produced from phenylalanine, was unaffected by starch. Tryptophan was fermented in these studies, although indole production was reduced in the starch fermentors. The importance of different fermentation substrates (casein, peptide mixtures, free amino acids) on aromatic amino acid metabolism was investigated in incubations of material taken from the proximal bowel. The phenylalanine metabolites, phenylacetate and phenylpropionate, were the principal phenolic compounds formed from all three substrates. Phenol was the major tyrosine metabolite produced in casein and peptide fermentations, while hydroxyphenylpropionate was a more important tyrosine product from free amino acids. Indole was the sole product of tryptophan metabolism, but was formed only from the free amino acid. Bacterial metabolism of individual phenolic and indolic compounds was also investigated. Phenol, p-cresol, phenylacetate, phenylpropionate, 4-ethylphenol, indole, indoleacetate, and indolepropionate were not metabolized by colonic bacteria. However, hydroxyphenylacetate was hydrolyzed to p-cresol, while hydroxyphenylpropionate was transformed into phenylpropionate. Indolepyruvate was either converted to indoleacetate or metabolized into indole. Indolepropionate, and to a lesser degree indoleacetate were produced from indolelactate. These data show that human colonic anaerobes are able to extensively degrade either free or peptide-bound aromatic amino acids, with the concomitant formation of toxic metabolic products. These processes are controlled to a significant degree by environmental factors such as pH and carbohydrate availability, and this ultimately influences the types and amounts of fermentation products that can be formed in different regions of the large bowel. Received: 25 January 1996; Accepted: 8 May 1996  相似文献   

14.
The absorption of lysine, arginine, phenylalanine and methionine by Taenia crassiceps larvae is linear with respect to time for at least 2 min. Arginine uptake occurs by a mediated system and diffusion, and arginine, lysine and ornithine (in order of decreasing affinity) are completely competitive inhibitors of arginine uptake. The basic amino acid transport system has a higher affinity for l-amino acids than d-amino acids, and blocking the α-amino group of an amino acid destroys its inhibitory action. Phenylalanine uptake by T. crassiceps larvae is inhibited in a completely competitive fashion by serine, leucine, alanine, methionine, histidine, phenylalanine, tyrosine and tryptophan (in order of increasing affinity). Methionine apparently binds non-productively to the phenylalanine (aromatic amino acid-preferring) transport system. l-methionine uptake by larvae is inhibited more by d-alanine and d-valine than by their respective l-isomers, while d- and l-methionine inhibit l-methionine uptake equally well. The presence of an unsubstituted α-amino group is essential for an inhibitor to have a high affinity for the methionine transport system. Uptake of arginine, phenylalanine and methionine is Na+-insensitive, and both phenylalanine and methionine are accumulated by larvae against a concentration difference in the presence or absence of Na+. Arginine accumulation is precluded by its rapid metabolism to proline, ornithine and an unidentified compound.  相似文献   

15.
1. Some of 5-methyltrypotophan (5MT)-resistant mutants derived from glutamate-producing bacteria such as Brevibacterium flavum, Corynebacterium acetoglutamicum and Micrococcus glutamicus produced a small amount of l-tryptophan, while tyrosine and phenylalanine auxotrophs of B. flavum did not.

2. 5-MT-resistant mutant derived from the auxotroph for tyrosine and phenylalanine produced 390 mg/liter of l-tryptophan at most. A mutant resistant to a higher concentration of 5MT, which was derived from a tyrosine and phenylalanine auxotrophic mutant which was resistant to a low concentration of 5MT, produced 660 mg/liter of l-tryptophan. Using this mutant, the effects of the concentrations of components of the culture medium on the l-tryptophan production were examined. The high concentration of l-tyrosine, but not l-phenylalanine, inhibited the l-tryptophan production. Using the improved culture medium, this strain produced 1.9 g/liter of l-tryptophan.  相似文献   

16.
Chorismate mutase CM-1, an isozyme that is inhibited by phenylalanine and tyrosine and activated by tryptophan was purified 1200-fold from etiolated mung bean seedlings with a final yield of 18–20%. Loss of activity was rapid in highly purified preparations but was reduced by the addition of bovine serum albumin. Enzyme activity was unaffected by thiol-alkylating agents, reducing agents, EDTA, or divalent cations.The enzyme displayed pH-sensitive, positive homotrophic cooperativity toward chorismate with greatest cooperativity at the pH optimum of the tryptophan-free enzyme (pH 7.2–7.4) and least cooperativity at the pH optimum of the enzyme fully activated with tryptophan (pH 7.0). Activation by tryptophan reduced the Km for the enzyme, and modified the sigmoid substrate saturation kinetics to a rectangular hyperbola. Feedback inhibition by the end product amino acids phenylalanine and tyrosine was not additive but revealed heterotrophic cooperativity with chorismate. Tyrosine (Ki = 31 μM) was a slightly more effective inhibitor than phenylalanine (Ki = 37 μM) at 1 mm chorismate. Tryptophan at equimolar concentration antagonized the feedback inhibition by phenylalanine and tyrosine. The latter two, however, at higher concentrations reversed the tryptophan activation in a noncompetitive fashion with respect to either tryptophan or chorismate. The enzyme was responsive only to the l-isomers of the amino acids. The results indicate a primary role for chorismate mutase CM-1 from mung bean in the regulation of the synthesis of phenylalanine and tyrosine for protein synthesis.  相似文献   

17.
Regulatory properties of chorismate mutase from Corynebacterium glutamicum were studied using the dialyzed cell-free extract. The enzyme activity was strongly feedback inhibited by l-phenylalanine (90% inhibition at 0.1~1 mm) and almost completely by a pair of l-tyrosine and l-phenylalanine (each at 0.1~1 mm). The enzyme from phenylalanine auxotrophs was scarcely inhibited by l-tyrosine alone but the enzyme from a wild-type strain or a tyrosine auxotroph was weakly inhibited by l-tyrosine alone (40~50% inhibition, l-tyrosine at 1 mm). The enzyme activity was stimulated by l-tryptophan and the inhibition by l-phenylalanine alone or in the simultaneous presence of l-tyrosine was reversed by l-tryptophan. The Km value of the reaction for chorismate was 2.9 } 10?3 m. Formation of chorismate mutase was repressed by l-phenylalanine. A phenylalanine auxotrophic l-tyrosine producer, C. glutamicum 98–Tx–71, which is resistant to 3-amino-tyrosine, p-aminophenylanaine, p-fluorophenylalanine and tyrosine hydroxamate had chorismate mutase derepressed to two-fold level of the parent KY 10233. The enzyme in C. glutamicum seems to have two physiological roles; one is the control of the metabolic flow to l-phenylalanine and l-tyrosine biosynthesis and the other is the balanced partition of chorismate between l-phenylalanine-l-tyrosine biosynthesis and l-tryptophan biosynthesis.  相似文献   

18.
The regulation of aromatic amino acid biosynthesis in Nocardia sp. 239 was studied. In cell-free extracts 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase activity was inhibited in a cumulative manner by tryptophan, phenylalanine and tyrosine. Chorismate mutase was inhibited by both phenylalanine and tyrosine, whereas prephenate dehydratase was very sensitive to inhibition by phenylalanine. Tyrosine was a strong activator of the latter enzyme, whereas anthranilate synthase was inhibited effectively by tryptophan. No clear repression of the synthesis of these enzymes was observed during growth of the organism in the presence of the aromatic amino acids. It is therefore concluded that in Nocardia sp. 239 synthesis of these amino acids is mainly regulated by feedback inhibition. The molecular organization and kinetic properties of DAHP synthase were studied in more detail following its purification. The molecular weight of the native enzyme and its single subunit species were estimated to be 168,000 and 41,000, respectively, suggesting that the enzyme is a tetramer. Apparent K m values for phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P) were 45 and 370 M, respectively. Tryptophan, phenylalanine and tyrosine inhibited DAHP synthase in a competitive manner with respect to E4P, with apparent K i values of 3, 160 and 180 M, respectively. In addition, tryptophan and E4P (apparent K i values of 11 and 530 M, respectively) were found to exert an uncompetitive and competitive inhibition, respectively, towards PEP.Abbreviations DAHP 3-deoxy-D-arabino-heptulosonate 7-phosphate - E4P erythrose-4-phosphate - PEP phosphoenolpyruvate - RuMP ribulose monophosphate - HPLC high performance liquid chromatography - FPLC fast protein liquid chromatography - SDS sodium dodecyl sulphate  相似文献   

19.
20.
Summary Incorporation of 14C-phenylalanine by T. neapolitanus was inhibited competitively by relatively low concentrations of glycine, serine, alanine, valine, leucine, isoleucine, tryptophan, tyrosine, histidine, threonine, and methionine (Group I amino acids), but not greatly depressed by aspartate, glutamate, lysine, arginine, cysteine (Group II amino acids) and proline at similar concentrations. Group I acids competed with each other for incorporation but were little affected by Group II acids. Similarly Group I acids little depressed the incorporation of Group II acids, among which, however, some mutual inhibition occurred. Incorporation of proline was depressed by both Group I and II acids. Two main permeation mechanisms are proposed, one transporting Group I acids, the other Group II acids, but some overlapping of function probably occurs. Proline may be transported by a third permease, which is subject to inhibition by both Group I and II acids. T. concretivorus also has a common transport mechanism for some amino acids. Less interaction between amino acids was found using two heterotrophic pseudomonads.Exogenous phenylalanine inhibited both the biosynthesis and the uptake of tyrosine and tryptophan by T. neapolitanus. High phenylalanine concentrations depressed the assimilation of 14C-labelled tyrosine and tryptophan less than low ones, suggesting that the bacteria developed a requirement for external tyrosine and tryptophan when exposed to highly inhibitory concentrations of phenylalanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号