首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parameters Affecting Solvent Production by Clostridium pasteurianum   总被引:4,自引:1,他引:3       下载免费PDF全文
The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/100 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol.  相似文献   

2.
Transport of molybdate by Clostridium pasteurianum.   总被引:12,自引:9,他引:3       下载免费PDF全文
The transport of 99MoO42- into dinitrogen-fixing cells of Clostridium pasteurianum was investigated. Transport of molybdate in this organism is energy dependent; sucrose is required in the minimal media, and the system is inhibited by the glycolysis inhibitors, NaF, iodoacetic acid, and arsenate. The cells accumulate molybdate against a concentration gradient, and the uptake shows a marked dependence on temperature (optimum 37 C) and pH (optimum 6.0). The rate of molybdate uptake with increasing molybdate concentrations shows saturation kinetics with an apparent Km and Vmax of 4.8 X 10(-5) M and 55 nmol/g of dry cells per min, respectively. Inhibition studies with the anions SO42-, S2O32-, WO42-, and VO32- show that SO42- and WO42- competitively inhibit MoO42- uptake (apparent Ki [SO42-] is 3.0 X 10(-5) M; apparent Ki [WO42-] is 2.4 X 10(-5), whereas S2O32- and VO32- have no inhibitory effect. Exchange experiments with MoO42- show that only a small percentage of the 99MoO42- taken up by the cells is exchangeable. Exchange experiments with WO42- and SO42- indicate that once inside the cells WO42- and SO42- cannot substitute for MoO42-.  相似文献   

3.
4.
Clostridiumpasteurianum is able to take up NH4+ and CH3NH3+ against concentration gradients. Uptake of CH3NH3+ is abolished by NH4+ and partially inhibited by dinitrophenol. C.pasteurianum membranes are permeabilized for NH4+ by valinomycin. These results are regarded as evidence for an ammonium translocase in membranes otherwise only slightly permeable for NH3.  相似文献   

5.
A method for the growth of Clostridium pasteurianum in a 140-liter (total capacity) stainless-steel vessel is described. By preventing the pH value from falling below 5.6, the growth of cultures was prolonged. Larger amounts of the carbon source (sucrose) and the nitrogen source (ammonium ion) were supplied and consumed, and cell yields of up to 5.56 g (dry weight) per liter were obtained. The highest cell yield previously reported was 1.7 g (dry weight) per liter obtained under nitrogen-fixing conditions in 500-ml cultures. The ferredoxin content of the cells was comparable with that obtained by earlier workers.  相似文献   

6.
Regulation of molybdate transport by Clostridium pasteurianum.   总被引:6,自引:6,他引:0       下载免费PDF全文
The regulation of the molybdate (MoO42-) transport activity of Clostridium pasteurianum has been studied by observing the effects of NH3, carbamyl phosphate, MoO42-, and chloramphenicol on the ability of cells to take up MoO42-. Compared with cells fixing N2, cells grown in the presence of 1 mM NH3 are greater than 95% repressed for MoO42- transport. Uptake activity begins to increase just before NH exhaustion (under Ar or N2) and continues to increase throughout the lag period as cells shift from NH3-growing to N2-fixing conditions. When cells are shifted from N2-fixing to NH3-growing conditions the transport activity per fixed number of cells decreases by increase of bells in absence of transport synthesis. Carbamyl phosphate (greater than or equal to 15 mM) but not NH3 inhibits 58% of the in vitro uptake activity. When 1 mM carbamyl phosphate is added just before the exhaustion of NH3, the transport activity, measured 2 h later, is 100% repressed. Cells grown in the presence of high MoO42- (1mM) are 80% repressed for MoO42- transport. Synthesis of the MoO42- transport system is also completely stopped when chloramphenicol (300 mug/ml) is added just before the exhaustion oNH 3 from the medium. These findings demonstrate that the ability of cells to transport MoO42- is dependent upon new protein synthesis and can be repressed by high levels of substrate. The regulation of MoO42- uptake by NH3 or carbamyl phosphate closely parallels the regulation of nitrogenase activity. Activity of neither nitrogenase component (Fe protein or MoFe protein) was detected even 3 h after the exhaustion of the NH3 if either MoO42- was absent or if WO42- was present in place of MoO42-. The duration of the diauxic lag increases with decreasing concentration of MoO42- in the medium. If no MoO42- is present the lag continues indefinitely. If MoO42- is added late in the lag period, growth under N2-fixing conditions resumes but only after a normal induction period.  相似文献   

7.
Energy-dependent transport of nickel by Clostridium pasteurianum.   总被引:1,自引:4,他引:1       下载免费PDF全文
The mechanism of nickel transport by Clostridium pasteurianum was investigated by using 63NiCl2 and a microfiltration transport assay. Nickel transport was energy dependent, requiring either glucose or sucrose; xylose and o-methyl glucose did not support growth, butyrogenesis, or transport. Transport was optimum at pH 7 and 37 degrees C, and early-stationary-phase cells had the highest propensity for nickel transport. The apparent Km and Vmax for nickel transport approximated 85 microM Ni and 1,400 pmol of Ni transported per min per mg (dry weight) of cells, respectively. On the basis of metal specificity, nickel appears to be transported primarily by a magnesium transporter, although an alternative nickel transporter may also be involved. ATPase inhibitors (N,N'-dicyclohexylcarbodiimide, tributyltin chloride, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole, and quercetin), protonophores (carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, and gramicidin D), metal ionophores (valinomycin, monensin, and nigericin), benzyl viologen, carbon monoxide, and oxygen inhibited nickel transport. Nickel transport was coupled indirectly to butyrogenesis and was dependent on the energy state of the cell.  相似文献   

8.
The reserve glucans of C. pasteurianum, previously assumed to be a single polysaccharide, have been fractionated into two polysaccharides which resemble amylopectin and dextran. Both polysaccharides are produced when cells are grown with sucrose, D-glucose, or D-fructose as carbon sources.  相似文献   

9.
10.
11.
An intracellular invertase was induced in cultures of Clostridium pasteurianum utilizing sucrose as its carbon source for growth. This enzyme synthesis could be repressed by the addition of fructose of a sucrose-growing culture. In contrast, invertase activity was not affected by the addition of glucose to sucrose-growing cells and this enzyme could be induced in a glucose-metabolizing culture by the addition of sucrose. This enzyme was purified 10.5-fold over the induced lese, EC 3.2.1.26) by substrate-specificity studies. Invertase had a pH optimum of 6.5 and an apparent Km of 79.5 mM for sucrose, and required high concentration of potassium phosphate for maximum activity. Invertase was completely inactivated by a 2-min heat treatment at 60 degrees C. This enzyme was strongly inhibited by p-hydroxymercuribenzoate (pCMB) and weakly inhibited by 5,5'-dithiobis(2-nitrobenzoic acid), while cysteine could substantially reverse pCMB) inhibition, suggesting that sulfhydryl group(s) were necessary for invertase activity.  相似文献   

12.
Proton magnetic resonance spectra at 500 MHz are reported for the oxidized and reduced forms of the 2[4Fe-4S]-ferredoxin from Clostridium pasteurianum. The reduced protein showed additional peaks in the 10–60 ppm region, which were previously unobserved, and there were significant differences between oxidized and reduced states in the whole region. The electron exchange rate in partially reduced ferredoxin is slow on the n.m.r. time scale when reduced with sodium dithionite, but fast when zinc reduced methyl viologen is used as reducing agent. We explain the difference between fast and slow exchange as being due to the different chemical properties of the two reducing agents.  相似文献   

13.
The biosynthesis of granulose by Clostridium pasteurianum   总被引:7,自引:4,他引:3  
1. Mutant strains of Clostridium pasteurianum were obtained, which are unable to synthesize granulose (an intracellularly accumulated amylopectin-like alpha-polyglucan). 2. These mutants lacked either (a) ADP-glucose pyrophosphorylase (EC 2.7.7.27), or (b) granulose synthase (i.e. ADP-glucose-alpha-1,4-glucan glucosyltransferase, EC 2.4.1.21). 3. Although both of these enzymes were constitutively synthesized by the wild-type organism, massive deposition of granulose in a sporulating culture coincided with a threefold increase in the specific activity of ADP-glucose pyrophosphorylase. 4. The soluble ADP-glucose pyrophosphorylase was partially purified (33-fold). Its ATP-saturation curve was not sigmoidal and its activity was not enhanced by phosphorylated intermediates of glycolysis, pyruvate, NAD(P)H or pyridoxal 5'-phosphate. ADP at relatively high concentrations acted as a competitive inhibitor (K(i)=19mm). 5. The dependence of granulose synthase on a suitable polyglucan primer was demonstrated by using enzyme obtained from a granulose-free mutant strain (lacking ADP-glucose pyrophosphorylase). 6. Partial purification of granulose synthase from wild-type strains was facilitated by its being bound to the native particles of granulose. No activator was discovered, but ADP, AMP and pyridoxal 5'-phosphate were competitive inhibitors, ADP being most effective (K(i) about 0.2mm). 7. It would appear that the synthesis of granulose in Cl. pasteurianum is not subject to the positive, fine control that is a feature of glycogen biosynthesis in most bacteria.  相似文献   

14.
The role of Mo in the activity and synthesis of the nitrogenase components of Clostridium pasteurianum has been studied by observing the competition of Mo with its structural analogue W. Clostridial cells when fixing N2 appeared strictly dependent upon the available Mo, showing maximal N2-fixing activity at molybdate concentrations in the media of 10 muM. Cells grown in media with 3 times 10(-6) muM Mo, although showing good growth, had only 15% as much N2-fixing activity. In the presence of W the synthesis of both nitrogenase components, molybdoferredoxin and azoferredoxin, was affected. Attempts to produce nitrogenase in W-grown cells by addition of high molybdenum to the media in the presence of inhibitors of protein synthesis showed that Mo incorporation into a possible inactive preformed apoenzyme did not occur. Unlike other molybdoenzyme-containing cells, in which W either is incorporated in place of Mo to yield inactive protein or initiates the production of apoprotein, C. pasteurianum forms neither a tungsten substituted molybdoferredoxin nor an apoprotein. It is concluded that in C. pasteurianum molybdenum is an essential requirement for both the biosynthesis and activity of its nitrogenase.  相似文献   

15.
Identification of molybdoproteins in Clostridium pasteurianum.   总被引:6,自引:4,他引:2       下载免费PDF全文
Cells of Clostridium pasteurianum whose N source is switched from NH3 to N2 accumulate large amounts of molybdenum beginning 1.5 h before the detection of nitrogenase activity. Anaerobic multiphasic gel electrophoresis and anion-exchange chromatography were used to identify the molybdoproteins and molybdenum-containing components present in N2-fixing cells. In addition to molybdate, six distinct 99Mo-labeled species were detected, i.e., a membrane fragment, the MoFe protein of nitrogenase, formate dehydrogenase, a Mo "binding-storage" protein, a 30-kilodalton molybdoprotein, and a low-molecular-weight molybdenum species. Of these, the MoFe protein, formate dehydrogenase, and the Mo binding-storage protein were present in more than one zone because of complex formation with other proteins, partial denaturation, and variation in the amount of Mo bound to the protein, respectively. In addition to the six proteins, a soluble "free" Mo cofactor in the cytosol was detected by showing that it reconstituted nitrate reductase activity in crude extracts of the Neurospora crassa mutant nit-1.  相似文献   

16.
17.
Primary structure of hydrogenase I from Clostridium pasteurianum   总被引:3,自引:0,他引:3  
J Meyer  J Gagnon 《Biochemistry》1991,30(40):9697-9704
Peptides obtained by cleavage of Clostridium pasteurianum hydrogenase I have been sequenced. The data allowed design of oligonucleotide probes which were used to clone a 2310-bp Sau3A fragment containing the hydrogenase encoding gene. The latter has been sequenced and was found to translate into a protein composed of 574 amino acids (Mr = 63,836), including 22 cysteines. C. pasteurianum hydrogenase is homologous to, but longer than, the large subunit of Desulfovibrio vulgaris (Hildenborough) [Fe] hydrogenase. It includes an additional N-terminal domain of ca. 110 amino acids which contains eight cysteine residues and which therefore could accommodate two of its postulated four [4Fe-4S] clusters. C. pasteurianum hydrogenase is most similar in length, cysteine positions, and sequence altogether to the translation product of a putative hydrogenase encoding gene from D. vulgaris (Hildenborough). Comparisons of the available [Fe] hydrogenase sequences show that these enzymes constitute a structurally rather homogeneous family. While they differ in the length of their N-termini and in the number of their [4Fe-4S] clusters, they are highly similar in their C-terminal halves, which are postulated to harbor the hydrogen-activating H cluster. Five conserved cysteine residues occurring in this domain are likely ligands of the H cluster. Possible ligation by other residues, and in particular by methionine, is discussed. The comparisons carried out here show that the H clusters most probably possess a common structural framework in all [Fe] hydrogenases. On the basis of the available data on these proteins and on the current developments in iron-sulfur chemistry, the H clusters possibly contain six to eight iron atoms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
Butanol production from thin stillage using Clostridium pasteurianum   总被引:1,自引:0,他引:1  
Ahn JH  Sang BI  Um Y 《Bioresource technology》2011,102(7):4934-4937
The production of butanol from thin stillage by Clostridium pasteurianum DSM 525 was evaluated in the paper. At initial pH values ranging from 5.0 to 7.0 C. pasteurianum DSM 525 produced 6.2-7.2 g/L of butanol utilizing glycerol in thin stillage as the main carbon source, with yields of 0.32-0.44 g butanol produced/g glycerol consumed, which are higher than previously reported yields (e.g., 0.14-0.31 g butanol/g glycerol, Biebl, 2001). Lactic acid in the thin stillage acted as a buffering agent, maintaining the pH of the medium within a range of 5.7-6.1. Lactic acid was also utilized along with glycerol, enhancing butanol production (6.5 g/L butanol vs. 8.7 g/L butanol with 0 and 16 g/L lactic acid, respectively). These results demonstrate the feasibility of cost-effective butanol production using thin stillage as a nutrient-containing medium with a pH buffering capacity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号