首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Penicillium charlesii secretes a galactofuranosyl and phosphodiester-containing peptidophosphogalactomannan (pPGM). A linear mannan was prepared from pPGM by treatment with 48% aqueous HF which selectively cleaves galactofuranosyl and phosphodiesters; treatment with alkaline borohydride releases the mannan from the polypeptide. Mannan from P. charlesii cultured in D-[1,2-13C2]glucose contained mannopyranosyl residues which were enriched in 13C at both C-1 and C-2 and, to a lesser extent, at C-5 and C-6. The mannan was examined with a combination of 13C NMR INADEQUATE pulse sequence and selective 13C saturation to assign the resonance frequency of anomeric carbons directly coupled to specific C-2 signals. Three species of mannosyl residues, each substituted with a glycosidic linkage at C-2, and a fourth species substituted at C-6 and not substituted at C-2 were observed. Mannan obtained from P. charlesii cultured in D-[6-13C]glucose contained mannopyranosyl residues which were enriched in 13C primarily in C-6. The mannan was examined by DEPT 13C NMR to determine the number of species which were substituted at C-6. Mannan, treated as described above, contained a 1----6-linked mannopyranosyl species. pPGM contains minor quantities of at least four other substances attached to hydroxymethyl groups of the hexosyl residues.  相似文献   

2.
为了进一步了解酵母甘露聚糖的精细结构信息,以便研究其功能,我们采用本实验室“拟规模化制备酵母甘露聚糖新工艺”,从废啤酒酵母(工厂下脚料)和市售鲜酵母细胞壁中制取了纯化的酵母甘露聚糖(mannan)。气相色谱法测定它们的糖组分和其相对含量,并且测定和比较分析酵母甘露聚糖与其组份糖的游离形式(甘露糖和葡萄糖)和酸解后的单体糖的可见—紫外吸收光谱和荧光发射光谱,和以He—Ne激光为激发光源的红外光谱。从中获得了:组份单糖聚合成甘露聚糖和多聚糖再分解成组份糖单体的光谱特征峰;和这些相关样品的光谱特征峰在聚合和分解过程中的变化与相应糖的细微结构变化的相关光谱信息。这些糖结构光谱特征相关信息为我们制备新型分子载体——甘露聚糖的聚合物(polymannan)和其功能研究提供了研究基础。  相似文献   

3.
The cell wall of Candida albicans is central to the yeasts ability to withstand osmotic challenge, to adhere to host cells, to interact with the innate immune system and ultimately to the virulence of the organism. Little is known about the effect of culture conditions on the cell wall structure and composition of C. albicans. We examined the effect of different media and culture temperatures on the molecular weight (Mw), polymer distribution and composition of cell wall mannan and mannoprotein complex. Strain SC5314 was inoculated from frozen stock onto yeast peptone dextrose (YPD), blood or 5% serum agar media at 30 or 37°C prior to mannan/mannoprotein extraction. Cultivation of the yeast in blood or serum at physiologic temperature resulted in an additive effect on Mw, however, cultivation media had the greatest impact on Mw. Mannan from a yeast grown on blood or serum at 30°C showed a 38.9 and 28.6% increase in Mw, when compared with mannan from YPD-grown yeast at 30°C. Mannan from the yeast pregrown on blood or serum at 37°C showed increased Mw (8.8 and 26.3%) when compared with YPD mannan at 37°C. The changes in Mw over the entire polymer distribution were due to an increase in the amount of mannoprotein (23.8-100%) and a decrease in cell wall mannan (5.7-17.3%). We conclude that C. albicans alters the composition of its cell wall, and thus its phenotype, in response to cultivation in blood, serum and/or physiologic temperature by increasing the amount of the mannoprotein and decreasing the amount of the mannan in the cell wall.  相似文献   

4.
The mannose-containing polysaccharides formed by species of Nadsonia, Hanseniaspora, Kloeckera, and Saccharomycodes were extracted with hot aqueous alkali and purified by precipitation as their copper complexes. N. fulvescens and N. elongata formed galactomannans, while Hanseniaspora and Kloeckera species and S. ludwigii formed mannans. H. valbyensis, H. uvarum, and K. apiculata were a group which formed mannans which had identical H-1 regions in their proton magnetic resonance (PMR) spectra, and H. osmophila, K. africana, and K. magna mannas formed another group based on similar spectra. K. javanica formed a mannan with an H-1 spectral region which resembled that of the H. valbyensis group in some respects and that of the H. osmophila group in others. The H-1 portion of the PMR spectrum of S. lugwigii mannan was very complex and was unlike that of any other apiculate yeast studied.  相似文献   

5.
We have studied the activation of human resting B cells by a carbohydrate antigen, mannan, with a polymannose branched repetitive structure. Mannan has been extracted from the cell wall of the Candida albicans yeast. For this purpose, dense G0 B lymphocytes were purified from tonsils. Mannan antigen was shown to trigger B cell activation, since an increase of cell volume and RNA synthesis occurred. B cell proliferation was observed following addition of recombinant interleukin 2, but not following addition of recombinant interleukin 4 or low-molecular-weight BCGF. The B cell activation appears to be mannan-specific since B cells obtained from mannan-sensitized subjects but not from unsensitized subjects were responsive. The observation that mannan antigen can directly activate specific dense B lymphocytes can be related to the previous observation that the in vitro anti-mannan antibody production does not require a cognate T-B cell interaction.  相似文献   

6.
The structure of a glycopeptide isolated from the yeast cell wall   总被引:21,自引:8,他引:13       下载免费PDF全文
1. Glycopeptides containing mannose were extracted from isolated yeast cell walls by ethylenediamine and purified by treatment with Pronase and fractionation on a Sephadex column. 2. A glycopeptide that appeared homogeneous on electrophoresis and ultracentrifugation had a molecular weight of 76000, and contained a high-molecular-weight mannan and approx. 4% of amino acids. 3. The amino acid composition of the peptide was determined. It was rich in serine and threonine and also contained glucosamine. No cystine and methionine were detected. 4. The glycopeptide underwent a beta-elimination reaction when treated with dilute alkali at low temperatures. The reaction resulted in the release of mannose, mannose disaccharides and possibly other low-molecular-weight mannose oligosaccharides. During the beta-elimination reaction the dehydro derivatives of serine and threonine were formed. One of the linkages between carbohydrate and amino acids in the glycopeptide is an O-mannosyl bond from mannose and mannose oligosaccharides to serine and threonine. 5. After the beta-elimination reaction the bulk of the mannose in the form of the large mannan component was still covalently linked to the peptide. This polysaccharide was therefore attached to the amino acids by a linkage different from the O-mannosyl bonds to serine and threonine that attach the low-molecular-weight sugars. 6. Mannan was prepared from the glycopeptide and from the yeast cell wall by treatment of the fractions with hot solutions of alkali. The mannan contained aspartic acid and glucosamine and some other amino acids. The aspartic acid and glucosamine were present in equimolar amounts; the aspartic acid was the only amino acid present in an amount equivalent to that of glucosamine. Thus there is the possibility of a linkage between the mannan and the peptide via glucosamine and aspartic acid. 7. Mannose 6-phosphate was shown to be part of the mannan structure. Information about the structure of the mannan and the linkage of the glucosamine was obtained by periodate oxidation studies. 8. The glucosamine present in the glycopeptide could not be released by treatment with an enzyme preparation obtained from the gut of Helix pomatia. This enzyme released glucosamine from the intact cell wall. Thus there are probably at least two polymers containing glucosamine in the cell wall. 9. The biosynthesis of the mannan polymer in the yeast cell wall is discussed with regard to the two types of carbohydrate-amino acid linkages found in the glycoprotein.  相似文献   

7.
Abstract Mannan synthetase activity has been investigated in Candida albicans , strain 4918, as well as in two relatively avirulent, cerulenin-resistant mutant derivative strains, 4918-2 and 4918-10. In addition, investigations pertaining to the effects of the agents, cerulenin and sodium butyrate, on the level of mannan synthetase activity during the yeast to hyphal transition of these strains have been performed. The results show that mannan synthetase activity in yeast cells of both mutant strains is consistently higher than that observed in the parental strain. Similarly, the profile of enzyme activity exhibited by the mutant strains as morphogenesis proceeds differs from that of the wild-type. Sodium butyrate has no significant effect on enzyme activity in these strains, but the presence of cerulenin results in alterations in mannan synthethase activity during morphogenesis of strain 4918.  相似文献   

8.
Anti-mannan was produced in rabbits after peptidoglucomannan in adjuvant was injected. The antiserum was used to detect mannan by immunodiffusion and counterimmunoelectrophoresis (CIE) in gel and by sandwich enzyme-linked immunosorbent assay (ELISA). The antiserum detected lower concentrations of mannan of serotype A than of serotype B. Except in CIE, the reactions were more pronounced at 4°C than at higher temperatures. CIE detected 0.8 g/ml mannan A or 12.5 /ml mannan B. Sandwich ELISA detected 3 ng/ml mannan A or 105 ng/ml mannan B. Mannan was not detected in the serum of patients or rabbits with candidiasis.Use of trade names is for identification only and does not constitute endorsement by the Public Health Service or by the U.S. Department of Health, Education and Welfare.  相似文献   

9.
Herpetomonas samuelpessoai, when cultured in various media, forms a linear beta-D-(1 leads to 2)-mannopyranan and a branched-chain glucuronoxylan containing D-glucopyranosyluronic acid nonreducing end units connected with alpha- and beta-linked D-xylopyranose units, as depicted in fragmental structures I, II, and III. Traces of amylose and alpha-linked mannopyranose moieties are also present. Mannose-containing materials predominate over glucuronoxylan in cells grown with proline as the carbon source (medium C). In a medium with sucrose as the carbon source and complex supplements (medium A) the proportion of glucuronoxylan is greater, and when the supplements were all chemically defined (medium B), a galactose-containing component is also formed. Glucuronoxylan is liberated from cells with hot aqueous alkali and it could be freed from lower molecular weight mannan by fractional precipitation. Mannan was obtained as the only polymeric component, with lower molecular weight homologues, by extraction of cells with hot water. In terms of ratios of component xylose, mannose, and galactose, the flagella resemble whole cells. However, flagella contain polysaccharide with alpha-D-linked mannopyranose side chains rather than beta-linked linear forms. These data are considered from standpoints of immunochemistry and electron microscopy.  相似文献   

10.
In view of the increase in Saccharomyces cerevisiae mannan content, the culture medium and condition for S. cerevisiae were optimized in this study. The influence of culture medium ingredients such as carbon and nitrogen sources, inorganic ion, and enzyme activator on mannan production were evaluated using factional design. The mathematical model was established by the quadratic rotary combination design through response surface analysis. The optimized concentrations of culture medium were determined as follows: 4.98 g/100 mL, sucrose; 4.39 g/100 mL, soybean peptone; 3.10 g/100 mL, yeast extract; and 2.21 g/100 mL, glycerol. The optimized culture medium increased mannan production from 82.7 ± 3.4 mg/100 mL to 162.53 ± 3.47 mg/100 mL. The influence of original pH, inoculum size, temperature, and media volume on mannan production was evaluated and confirmed by orthogonale experimental design, with the order of effect as follows: media volume > temperature > initial pH > inoculation size. The optimized culture condition was pH, 5; inoculum size, 5 ml; temperature, 32°C; and media volume, 40 mL. The maximum mannan production increased to 258.5 ± 9.1 mg/100 mL at the optimum culture condition. It was evident that the mannan production was affected significantly by culture medium and condition optimization (p < 0.01).  相似文献   

11.
The x-ray fiber diffraction pattern of the mannan I polymorph has been reexamined using the linked atom least squares (LALS) model-building program. The chain conformation and packing were refined using atomic coordinates derived from the x-ray crystallographic structure of mannotriose. The study confirmed the conclusions of previous investigations and showed that, in mannan I, the chains are antiparallel. Mannan polymorphism is compared with other related polysaccharides and the biological significance of this result in relation to the biosynthesis of mannan is discussed.  相似文献   

12.
Antarctic yeast strains were investigated for exopolysaccharide biosynthesis and the Sporobolomyces salmonicolor AL1 strain was selected. It was studied for exopolysaccharide biosynthesis on different carbon and nitrogen sources. The investigations showed that sucrose and ammonium sulphate were suitable culture medium components for polymer biosynthesis. Exopolysaccharide formation by the yeast strain was accompanied by a decrease in the culture medium pH value from the initial pH 5.3 to pH 1.7–2.0. During the biosynthetic process, the dynamic viscosity of the culture broth increased to the maximum value of 15.37 mPas and the polysaccharide yield reached 5.63 g/l on a culture medium containing 5.00% sucrose and 0.25% ammonium sulphate at a temperature of 22 °C for 120 h. The crude polysaccharide obtained from Sp. salmonicolor AL1 featured high purity (90.16% of carbon content) and consisted of glucose (54.1%), mannose (42.6%) and fucose (3.3%). Pure mannan containing 98.6% of mannose was isolated from it.  相似文献   

13.
Arabinomannan (AMannan) and mannan (Mannan) are major polysaccharides antigens of the mycobacterial capsule. They are highly related to the lipoarabinomannan (LAM) and lipomannan (LM) lipoglycans of the cell wall, known to participate to the immunopathogenesis of mycobacterial infections. Here we present the identification of two related polysaccharides from Mycobacterium kansasii that co-purified with AMannan and Mannan. Structural analysis using GC, MALDI-MS and NMR clearly established these molecules as non-acylated phosphorylated AMannan and Mannan designated P-AMannan and P-Mannan, respectively. These glycoconjugates represent a new source of polysaccharide structural variability in mycobacteria and constitute unique tools for structure-activity relationship studies in order to investigate the role of fatty acids in the biological functions of LAM and LM. The potential participation of these polysaccharides in influencing the outcome of the infection is also discussed.  相似文献   

14.
When Rhodococcus erythropolis is cultivated under the submerged conditions in a medium containing yeast mannan as a sole carbon source, it synthesizes exocellular alpha-mannanase which hydrolyzes alpha-1,2 and alpha-1,3 bonds in a mannan molecule. The alpha-mannanase of R. erythropolis exerts distinct lectin properties under the conditions which entirely exclude its enzyme activity.  相似文献   

15.
Schröder R  Wegrzyn TF  Sharma NN  Atkinson RG 《Planta》2006,224(5):1091-1102
Mannan transglycosylases are cell wall enzymes able to transfer part of the mannan polysaccharide backbone to mannan-derived oligosaccharides (Schröder et al. in Planta 219:590–600, 2004). Mannan transglycosylase activity was purified to near homogeneity from ripe tomato fruit. N-terminal sequencing showed that the dominant band seen on SDS-PAGE was identical to LeMAN4a, a hydrolytic endo-β-mannanase found in ripe tomato fruit (Bewley et al. in J Exp Bot 51:529–538, 2000). Recombinant LeMAN4a protein expressed in Escherichia coli exhibited both mannan hydrolase and mannan transglycosylase activity. Western analysis of ripe tomato fruit tissue using an antibody raised against tomato seed endo-β-mannanase revealed four isoforms present after 2D-gel electrophoresis in the pH range 6–11. On separation by preparative liquid isoelectric focussing, these native isoforms exhibited different preferences for transglycosylation and hydrolysis. These results demonstrate that endo-β-mannanase has two activities: it can either hydrolyse mannan polysaccharides, or in the presence of mannan-derived oligosaccharides, carry out a transglycosylation reaction. We therefore propose that endo-β-mannanase should be renamed mannan transglycosylase/hydrolase, in accordance with the nomenclature established for xyloglucan endotransglucosylase/hydrolase. The role of endo-acting mannanases in modifying the structure of plant cell walls during cell expansion, seed germination and fruit ripening may need to be reinterpreted in light of their potential action as transglycosylating or hydrolysing enzymes.  相似文献   

16.
Purification of Phosphomannanase and Its Action on the Yeast Cell Wall   总被引:8,自引:2,他引:6  
An improved assay for phosphomannanase (an enzyme required for the preparation of yeast protoplasts) has been developed based on the release of mannan from yeast cell walls. A procedure for the growth of Bacillus circulans on a large scale for maximal production of the enzyme is described. The culture medium containing the secreted enzyme was concentrated, and the enzyme was purified by protamine sulfate treatment, ammonium sulfate fractionation, gel filtration on P-100, and isoelectric density gradient electrophoresis. Although the enzyme was purified to apparent homogeneity, it still contained laminarinase activity which could not be separated by size or charge. The two enzymatic activities also exhibited two isoelectric points (pH 5.9 and 6.8) on ampholine electrophoresis. The laminarinase was not active on yeast glucan. The enzyme preparation was shown to remove mannan from yeast without removing glucan. Electron microscopic observation supports the idea that this mannan is the outer layer of the yeast wall. Phosphomannanase will produce protoplasts from yeast when supplemented with relatively low amounts of snail enzyme. This activity is present in snail enzyme but appeares to be rate-limiting when snail enzyme alone is used. Phosphomannanase has proven useful for studying the macromolecular organization of polymers in the yeast cell wall.  相似文献   

17.
A detailed study of horseradish peroxidase (HRP) uptake by in vitro cultured bone marrow-derived macrophages was undertaken. Biochemical quantitations performed over a wide range of HRP concentrations, in the absence or presence of yeast mannan, showed that these macrophages pinocytose HRP by both fluid phase and mannose receptor-mediated uptake. The relative contribution of these two types of endocytosis varied with the concentration of enzyme in the extracellular medium. A morphological study at the light and electron microscope levels conducted in parallel confirmed the biochemical data.  相似文献   

18.
We examined the change of the composition of the cell wall polysaccharides prepared from cells of the salt-tolerant yeast Zygosaccharomyces rouxii grown in two media containing 20% NaCl and 0% NaCl. Comparative analysis of their walls showed that the wall obtained from salt-free medium had greater quantities of alkali-insoluble fraction and smaller quantities of mannan than the walls obtained from 20% NaCl medium. The alkali-insoluble fractions from the cell walls obtained from salt-free medium contained a large amount of glucosamine and a smaller amount of linear β-1,3-glucosidic linkage than the fractions from the cell walls obtained from 20% NaCl medium. Structural analyses showed that the mannans from each cell wall contained an α-1,6-mannbsidic linked backbone to which single mannose and mannobiose units were connected as side chains by α-1,2-mannosidic linkages. However, when cells were grown in the presence of 20% NaCl, the side chains of the mannans consisting of a mannobiose unit were largely reduced.

These results indicated that the structure of alkali-insoluble glucan and mannan were greatly affected by the presence of NaCl in the final medium.  相似文献   

19.
A gram-negative bacterium strongly lytic toward living cells of the food yeast Saccharomyces fragilis was isolated by continuous-flow enrichment from compost. The organism was identified as a species of Arthrobacter. The extracellular lytic enzyme complex produced by this bacterium contained β-1,3-glucanase, mannan mannohydrolase, and proteolytic activities. The polysaccharases were inducible by whole yeast cells. In chemostat cultures on chemically defined media, synthesis of the polysaccharases was very slight and only detectable at dilution rates below 0.02 hr?1. Enzyme production in defined media was not solely dependent on growth rate but also was influenced by the growth limiting substrate and the culture history. The production of individual depolymerases and of the lytic activity was studied in batch and chemostat cultures containing yeast as the limiting substrate. The maximum specific growth rate of the Arthrobacter under these conditions was 0.22 hr?1. β-1,3-Glucanase and proteolytic activities were synthesized by exponentially growing bacteria but maximum lytic titers did not develop until the specific growth rate was declining, at which time mannan mannohydrolase syntheses was induced. In yeast limited chemostats polysaccharase syntheses were greatest at the lowest dilution rates examined, namely 0.02 hr?1. Further optimization of enzyme production was achieved by feeding the Arthrobacter culture to a second-stage chemostat. A comparison of lytic enzyme productivities in batch and chemostat cultures has been made.  相似文献   

20.
ABSTRACT

Yeast mannan is a part of yeast cell wall and can potentially affect gut microflora as a soluble dietary fiber. We demonstrated that yeast mannan suppressed putrefactive production and increased the relative abundance of Bacteroides thetaiotaomicron in in vitro fecal fermentation. These results suggest that yeast mannan can be used as a novel prebiotic food ingredient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号