首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substrate specificity of a sulfhydryl protease (P-Ia) purified from germinating corn was investigated by using synthetic substrates and oxidized insulin B-chain. P-Ia showed a potent activity for p-nitrophenyl esters of various amino acid derivatives, except for those of carbo- benzoxy-L-proline and carbobenzoxy-L-valine. Benzoylarginine-β-naphthylamide, a good substrate for papain and cathepsin Bl, was not hydrolyzed by P-Ia. An investigation with acyl dipeptides showed that P-Ia hydrolyzed preferably the peptide bond adjacent to the carboxyl group of the aromatic amino acid. Oxidized insulin B-chain was hydrolyzed at the peptide bonds Gln4-His5, Glu13-Ala14, Ala14-Leu15, Leu15-Tyr16, Tyr16-Leu17 and Tyr26- Thr27. P-Ia, in spite of a sulfhydryl protease, seems to be characterized by its similarity to pepsin rather than papain, as far as the substrate specificity studied in the present work is concerned.  相似文献   

2.
We have previously isolated cyclo(L-Pro-L-Tyr) and cyclo(L-Phe-L-Pro) from an actinomycete by a novel enzymatic conversion-guided method. Their tetradehydro derivatives, cyclo(ΔPro-ΔTyr) and cyclo(ΔPhe-ΔPro), were enzymatically prepared. Neither of them inhibited cell division, in contrast to other tetradehydro cyclic dipeptides prepared previously. This result suggests that an NH proton in a diketopiperazine ring and/or conformation of the compound are important for the activity.  相似文献   

3.
The protease from Streptomyces cellulosae formed more turbidity in a 16% soybean protein hydrolysate in the initial stage of the reaction than α-chymotrypsin did, when the proteolytic activity of the protease was same as that of α-chymotrypsin. In highly concentrated solutions (2.5%) of various dipeptides, oligopeptides were produced by condensation by the protease. The oligopeptides formed were (l-Leu-Gly)2 and (l-Leu-Gly)3 from l-Leu-Gly, (l-Phe-l-Val)2 from l-Phe-l-Val, (l-Val-l-Phe)2 and (l-Val-l-Phe)3 from l-Val-l-Phe, and (l-Leu-l-Met)2 and (l-Leu-l-Met)3 from l-Leu-l-Met.  相似文献   

4.
A simple procedure is described to obtain D- and L-allothreonine (D- and L-aThr). A mixture of N-acetyl-D-allothreonine (Ac-D-aThr) and N-acetyl-L-threonine (Ac-L-Thr) was converted to a mixture of their ammonium salts and then treated with ethanol to precipitate ammonium N-acetyl-L-threoninate (Ac-L-Thr·NH3) as the less-soluble diastereoisomeric salt. After separating Ac-L-Thr·NH3 by filtration, Ac-D-aThr obtained from the filtrate was hydrolyzed in hydrochloric acid to give D-aThr of 80% de, recrystallized from water to give D-aThr of >99% de. L-aThr was obtained from a mixture of the ammonium salts of Ac-L-aThr and Ac-D-Thr in a similar manner.  相似文献   

5.
The l-leucine productivity of an l-leucine producing strain, H-1204, of Corynebacterium glutamicum substantially decreased during a large-scale culture or repetitive subculturing. This instability was found to be due to the appearance of revertants with lower or no l-leucine productivity. Strains in the culture broth could be roughly classified into three types on the basis of their phenotypes: l-type, original l-leucine producing strain, ValL Leu+ (valine leaky); M-type, Val+ Leu+ (prototroph); V-type, Val+ Leu- (leucine auxotroph). The appearance of these revertants was determined to be caused by the distribution imbalance of α-ketoisovaleric acid, the common precursor for l-leucine and l-valine biosynthesis.  相似文献   

6.
Pleurotus eryngii serine aminopeptidase that has peptide bond formation activity, redesignated as eryngase, was cloned and expressed. Eryngase has a family S9 peptidase unit in the C-terminal region having a catalytic triad of Ser, Asp, and His. In the phylogenetic relations among the subfamilies of family S9 peptidase (S9A, prolyl oligopeptidase; S9B, dipeptidyl peptidase; S9C, acylaminoacyl peptidase; S9D, glutamyl endopeptidase), eryngase existed alone in the neighbor of S9C subfamily. Mutation of the active site Ser524 of the eryngase with Ala eliminated its catalytic activity. In contrast, S524C mutant maintained low catalytic activity. Investigation of aminolysis activity using l-Phe-NH2 as a substrate showed that S524C mutant exhibited no hydrolysis reaction but synthesized a small amount of l-Phe-l-Phe-NH2 by the catalysis of aminolysis. In contrast, wild-type eryngase hydrolyzed the product of aminolysis l-Phe-l-Phe-NH2. Results show that the S524C mutant preferentially catalyzed aminolysis when on an l-Phe-NH2 substrate.  相似文献   

7.
L-amino acid oxidase (L-AAO) from snake venom Crotalus adamanteus was successfully tested as a catalyst in supercritical CO2 (SC-CO2). The enzyme activity was measured before and after exposure to supercritical conditions (40°C, 110 bar). It was found that L-AAO activity slightly increased after SC-CO2 exposure by up to 15%. L-AAO was more stable in supercritical CO2 than in phosphate buffer under atmospheric pressure, as well as in the enzyme membrane reactor (EMR) experiment. 3,4-Dihydroxyphenyl-L-alanine (L-DOPA) oxidation was performed in a batch reactor made of stainless steel that could withstand the pressures of SC-CO2, in which L-amino acid oxidase from C. adamanteus was able to catalyze the reaction of oxidative deamination of L-DOPA in SC-CO2. For the comparison L-DOPA oxidation was performed in the EMR at 40°C and pressure of 2.5 bar. Productivity expressed as mmol-s of converted L-DOPA after 3?h per change of enzyme activity after 3?h was the highest in SC-CO2 (1.474?mmol?U?1), where catalase was present, and the lowest in the EMR (0.457?mmol?U?1).  相似文献   

8.
Culture conditions for the preparation of cells containing high tyrosine phenol lyase activity were studied with Erwinia herbicola ATCC 21434. Adding pyridoxine to the medium enhanced enzyme formation, suggesting that it was utilized as a precursor of the coenzyme, pyridoxal phosphate. Glycerol plus succinic acid; amino acids, such as, DL-methionine, DL-alanine and glycine; and metallic ion, ferrous ion promoted enzyme formation as well as cell growth. Adding L-tyrosine, as inducer, to the culture medium was essential for enzyme formation. However, when large amounts of L-tyrosine were added, the enzyme formation was repressed by the phenol liberated from L-tyrosine. In fact, formation of the enzyme was enhanced by removing phenol during cultivation. L(D)-Phenylalanine or phenylpyruvic acid had a synergistic effect on the induction of enzyme by L-tyrosine.

Cells with high enzyme activity were prepared by growing cells at 28°C for 28 hr in a medium containing 0.2% L-tyrosine, 0.2% KH2PO4, 0.1% MgSO47H2O, 0.001% FeSO7H2O, 0.01% pyridoxine-HC1, 0.6% glycerol, 0.5% succinic acid, 0.1% DL-methionine, 0.2% DL-alanine, 0.05% glycine, 0.1% L-phenylalanine and 120 ml/liter hydrolyzed soybean protein in tap water with the pH controlled at 7.5 throughout cultivation.  相似文献   

9.
Two novel genes (tsB, tsC) involved in the conversion of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) to L-cysteine through S-carbamyl-L-cysteine (L-SCC) pathway were cloned from the genomic DNA library of Pseudomonas sp. TS1138. The recombinant proteins of these two genes were expressed in Escherichia coli BL21, and their enzymatic activity assays were performed in vitro. It was found that the tsB gene encoded an L-ATC hydrolase, which catalyzed the conversion of L-ATC to L-SCC, while the tsC gene encoded an L-SCC amidohydrolase, which showed the catalytic ability to convert L-SCC to L-cysteine. These results suggest that tsB and tsC play important roles in the L-SCC pathway and L-cysteine biosynthesis in Pseudomonas sp. TS1138, and that they have potential applications in the industrial production of L-cysteine.  相似文献   

10.
Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) produced N-acyl-D-aspartate amidohydrolase (D-AAase) in the presence of N-acetyl-D-aspartate as an inducer. The enzyme was purified to homogeneity. The enzyme had a molecular mass of 56 kDa and was shown by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) to be a monomer. The isoelectric point was 4.8. The enzyme had maximal activity at pH 7.5 to 8.0 and 50°C, and was stable at pH 8.0 and up to 45°C. N-Formyl (Km=12.5 mM), N-acetyl (Km=2.52 mM), N-propionyl (Km=0.194 mM), N-butyryl (Km=0.033 mM), and N-glycyl (Km =1.11 mM) derivatives of D-aspartate were hydrolyzed, but N-carbobenzoyl-D-aspartate, N-acetyl-L-aspartate, and N-acetyl-D-glutamate were not substrates. The enzyme was inhibited by both divalent cations (Hg2+, Ni2+, Cu2+) and thiol reagents (N-ethylmaleimide, iodoacetic acid, dithiothreitol, and p-chloromercuribenzoic acid). The N-terminal amino acid sequence and amino acid composition were analyzed.  相似文献   

11.
12.
A new intracellular peptidase, which we call “d-peptidase S,” was purified from Nocardia orientalis IFO 12806 (ISP 5040). The purified enzyme was homogeneous on disc gel electrophoresis. The molecular weight and the isoelectric point were estimated to be 52,000 and 4.9, respectively. The optimum pH for the hydrolysis of d-leucyl-d-leucine was 8.0 to 8.1, and the optimum temperature was 36°C. The purified enzyme usually hydrolyzed the peptide bonds preceding the hydrophobic D-amino acids of dipeptides. Tri- and tetra-peptides extending to the amino terminus of such peptides were also hydrolyzed. Therefore, the enzyme is a carboxylpeptidase-like peptidase specific to d-amino acid peptides. The Km values for d-leucyl-d-leucine and l-leucyl-d-leucine were 0.21 × 10-3 and 0.44 × 10-3 m respectively. The activity was inhibited by several sulfhydryl reagents and two chelators, 8-hydroxyquinoline and o-phenanthroline.  相似文献   

13.
An isoleucine leaky auxotroph of Arthrobacter paraffineus, which was isolated by Takayama et al.3) as a mutant producing L-threonine and L-valine from n-paraffin, was subjected to further mutagenesis in an attempt to obtain better L-threonine producers. Some of the double auxotrophs derived from the isoleucine auxotroph and some of their revertants with respect to isoleucine requirement produced more L-threonine than the original isoleucine auxotroph. In contrast to the original isoleucine auxotroph, a revertant derived from a methionine plus isoleucine double auxotroph, KY7135, produced an increased amount of L-threonine and a decreased amount of L-valine. The optimum level of L-methionine for L-threonine production in KY7135 was much higher (1000 ~ 2000 μg/ml) with n-paraffin medium than with sorbitol or mannitol medium (10 ~ 50 μg/ml). L-Threonine production reached a maximum level (11.5 mg/ml) in 7 days incubation with the medium containing 10% n-paraffin (C12 ~ C14 rich). Several mutants which produce L-threonine more than 12 mg/ml were obtained from KY 7135 by monocolony isolation procedure.  相似文献   

14.
A new H2O2-generating pyranose oxidase was purified as a strong antifungal protein from an arbuscular mycorrhizal fungus, Tricholoma matsutake. The protein showed a molecular mass of 250 kDa in gel filtration, and probably consisted of four identical 62 kDa subunits. The protein contained flavin moiety and it oxidized D-glucose at position C-2. H2O2 and D-glucosone produced by the pyranose oxidase reaction showed antifungal activity, suggesting these compounds were the molecular basis of the antifungal property. The V max, K m, and k cat for D-glucose were calculated to be 26.6 U/mg protein, 1.28 mM, and 111/s, respectively. The enzyme was optimally active at pH 7.5 to 8.0 and at 50°C. The preferred substrate was D-glucose, but 1,5-anhydro-D-glucitol, L-sorbose, and D-xylose were also oxidized at a moderate level. The cDNA encodes a protein consisting of 564 amino acids, showing 35.1% identity to Coriolus versicolor pyranose oxidase. The recombinant protein was used for raising the antibody.  相似文献   

15.
L-Methionine γ-lyase (EC 4.4.1.11) catalyzes α,γ-elimination of O-substituted L-homoserines (i.e., ROCH2CH2CH(NH2)COOH; R = acetyl, succinyl, or ethyl) to produce α-ketobutyrate, ammonia, and the corresponding carboxylate or alcohol, and also their γ-replacement reactions with various thiols to produce the corresponding S-substituted L-homocysteines. The reactivities of O-substituted L-homoserines in α,γ-elimination relative to that of L-methionine were as follows: O-acetyl, 140%; O-succinyl, 17%; and O-ethyl-L-homoserine, 99%. However, the enzyme does not catalyze the synthesis of O-substituted L-homoserines from alcohol or carboxylic acids in a γ-replacement reaction. We have analyzed the α,γ-elimination of O-acetyl-L-homoserine in deuterium oxide by 1H-NMR. The [β-2H, γ-2H]-species of α-ketobutyrate was exclusively formed from O-acetyl-L-homoserine. The enzyme catalyzes deamination of L-vinylglycine to give the identically labeled α-ketobutyrate species. Incubation of the enzyme with O-acetyl-L-homoserine resulted in the appearance of a new absorption band at 480 nm, which was observed also with L-vinylglycine. These results strongly suggest that the α,γ-elimination and γ-replacement reactions of O-acetyl-L-homoserine proceed through the stabilized α-carbanion of a Schiff base between pyridoxal 5'-phosphate and vinylglycine, which has been suggested as the key intermediate of L-methionine γ-lyase-caralyzed reactions of S-substituted L-homocysteines [N. Esaki, T. Suzuki, H. Tanaka, K. Soda and R. R. Rando, FEBS Lett., 84, 309 (1977).  相似文献   

16.
The synthesis of a new series of Nα-benzyloxycarbonyl (Z)-amino acid and Z-dipeptide chloromethyl ketone derivatives is described. The new derivatives are as follows; Z-l-Leu-CH2Cl, Z-l-Phe (N02)-CH2Cl, Z-l-Tyr (Bzl)-CH2Cl, Z-l-Tyr (Z)-CH2Cl, Z-l-Tyr-CH2Cl, Z-l-Glu (Me)-CH2Cl, Z-l-Phe-l-Leu-CH2Cl, Z-l-Tyr-l-Leu-CH3Cl, Z-l-Leu-l-Phe-CH2Cl, Z-l-Leu-l-Tyr-CH2Cl, Z-l-G1U (Me)-l-Tyr-CH2Cl, Z-l-G1U (Me)-l-Phe-CH2Cl.  相似文献   

17.
  1. L-Asparaginase (EC 3.5.1.1) from Escherichia coli A–l–3 was acetylated using acetic anhydride as a modifying chemical. The fully acetylated L-asparaginase retained 60% of the activity of the unmodified L-asparaginase.

  2. The acetylated L-asparaginase hydrolyzed D-asparagine and L-glutamine as well as L-asparagine in the same ratio as the unmodified L-asparaginase did.

  3. However, the effects of pH on the activity of the acetylated L-asparaginase showed very interesting differences from that of L-asparaginase. On the other hand, both L-asparaginase and the acetylated L-asparaginase exhibited similar pH activity curves on L-glutamine hydrolysis.

  4. The acetylated L-asparaginase was found to become more stable against acid or heat in the presence of L-aspartate than in its absence in the same manner as L-asparaginase was.

  相似文献   

18.
The enzyme involved in the reduction of Δ 1-piperideine-6-carboxylate (P6C) to L-pipecolic acid (L-PA) has never been identified. We found that Escherichia coli JM109 transformed with the lat gene encoding L-lysine 6-aminotransferase (LAT) converted L-lysine (L-Lys) to L-PA. This suggested that there is a gene encoding “P6C reductase” that catalyzes the reduction of P6C to L-PA in the genome of E. coli. The complementation experiment of proC32 in E. coli RK4904 for L-PA production clearly shows that the expression of both lat and proC is essential for the biotransformation of L-Lys to L-PA. Further, We showed that both LAT and pyrroline-5-carboxylate (P5C) reductase, the product of proC, were needed to convert L-Lys to L-PA in vitro. These results demonstrate that P5C reductase catalyzes the reduction of P6C to L-PA. Biotransformation of L-Lys to L-PA using lat-expressing E. coli BL21 was done and L-PA was accumulated in the medium to reach at an amount of 3.9 g/l after 159 h of cultivation. It is noteworthy that the ee-value of the produced pipecolic acid was 100%.  相似文献   

19.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38–39 kDa, as judged by SDS–PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5±4.5 μM and uronic acids, such as D-galacturonic acid (Km=3.79±0.5 mM) and D-glucuronic acid (Km=4.67±0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP+. The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H2O2, suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

20.
The α-methylserine aldolase gene from Variovorax paradoxus strains AJ110406, NBRC15149, and NBRC15150 was cloned and expressed in Escherichia coli. Formaldehyde release activity from α-methyl-L-serine was detected in the cell-free extract of E.coli expressing the gene from three strains. The recombinant enzyme from V. paradoxus NBRC15150 was purified. The V max and K m of the enzyme for the formaldehyde release reaction from α-methyl-L-serine were 1.89 μmol min?1 mg?1 and 1.2 mM respectively. The enzyme was also capable of catalyzing the synthesis of α-methyl-L-serine and α-ethyl-L-serine from L-alanine and L-2-aminobutyric acid respectively, accompanied by hydroxymethyl transfer from formaldehyde. The purified enzyme also catalyzed alanine racemization. It contained 1 mole of pyridoxal 5′-phosphate per mol of the enzyme subunit, and exhibited a specific spectral peak at 429 nm. With L-alanine and L-2-aminobutyric acid as substrates, the specific peak, assumed to be a result of the formation of a quinonoid intermediate, increased at 498 nm and 500 nm respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号