首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An isocratic high-performance liquid chromatography (HPLC) method was developed and validated to determine Aloe Emodin (AE) in mouse plasma. The analysis required 0.3 ml of plasma and involves extraction with dichloromethane. The HPLC separation was carried out on Symmetry Shield RP18, a mobile phase of methanol-water-acetic acid (65:35:0.2) and fluorescence detection at lambda(ex)=410 nm and lambda(em)=510 nm. The retention time of AE was 11.7 min. The assay was linear from 10 to 1,000 ng/ml (r2 > or = 0.999), showed intra- and inter-day precision within 7.8 and 4.7%, and accuracy of 87.3-105.7%. Detection limit (LOD) and quantification limit (LOQ) were 4.5 and 5 ng/ml, respectively. The method was applied to determine for the first time the pharmacokinetic of AE in mice.  相似文献   

2.
The long-term precision of three retention parameters, the absolute retention time (RT), the relative retention time related to dibenzepin (RRT), and the internal retention index based on the alkylfluoroaniline series (RI), were studied with 14 basic drugs on HP-5 and DB-17 columns with and without the use of the retention time locking option (RTL). Using the constant flow mode in all experiments, the RTL method was found to produce superior precision with all three retention parameters compared to the non-RTL method on each column. The results showed that RTL offers a significant advantage within a single instrument method, not only between methods, with CV<0.1% by RRT. Consequently, a dual-column gas chromatographic procedure with nitrogen-phosphorus detection was described for comprehensive screening for basic drugs in 1-ml whole blood samples. The method consisted of one-step liquid-liquid extraction with butyl acetate, identification using RRT in the RTL mode, and quantification based on single point calibration. The method allowed reliable screening and quantification of 124 basic drugs at therapeutic and toxic concentration levels in autopsy blood.  相似文献   

3.
A novel high‐performance liquid chromatography (HPLC) multifunctional immobilized chiral stationary phase was prepared by bonding dialdehyde microcrystalline cellulose to aminosilica via Schiff base reaction and then derivatized with 3,5‐dimethylphenyl isocyanate. The HPLC multifunctional immobilized chiral stationary phase could not only achieve chiral separation but also achieve achiral separation. Chiral separation evaluation showed that 1‐(1‐naphthyl)ethanol and mandelonitrile got separation in normal phase (NP) mode. Ranolazine, benzoin ethyl ether, metalaxyl, and diclofop were successfully separated in reversed phase (RP) mode. Aromatic compounds such as polycyclic aromatic hydrocarbons (PAHs), anilines, and aromatic acids were selected as analytes to investigate the achiral separation performance of the multifunctional immobilized chiral stationary phase in NP and RP modes. The achiral separation evaluation showed that six PAHs could get good separation within 10 minutes in NP mode. Four aromatic acids were well separated in RP mode. The retention mechanism of aromatic compounds on the stationary phase was discussed, founding that π‐π interaction, π‐π electron‐donor‐acceptor (EDA) interaction, and hydrogen bonding interaction played important roles during the achiral separation process. This multifunctional immobilized chiral stationary phase had the advantages of simple bonding steps, short reaction time, and no need for space arm.  相似文献   

4.
A natural isolate of RP4 (PRC#116) acquired from the Stanford University Plasmid Reference Center differed from the wild-type Incompatibility Group P plasmid in several respects. Cells of Escherichia coli harboring PRC#116 were resistant to the IncP pili-specific bacteriophage PRD1 and GU5, and transferred this plasmid at a lower efficiency than the wild-type RP4. Phage sensitivity was restored, and transfer considerably improved in PRC#116+ bacteria transformed with plasmid constructs containing the origin of transfer (oriT region) of RP4. Mutant RP4 plasmids equivalent to PRC#116 were selected at a high frequency from an RP4+ E. coli population infected with PRD1 indicating that this RP4 variant may be the product of a very common mutation of the wild-type plasmid.  相似文献   

5.
BackgroundThe aim of the study was to investigate the safety of combining preoperative stereotactic body radiotherapy (SBRT) with robotic radical prostatectomy (RP) for high risk prostate cancer (HRCaP). Many patients with HRCaP will require adjuvant or salvage radiotherapy after RP. The addition of preoperative SBRT before RP may spare patients from subsequent prolonged courses of RT.Materials and methodsEligible patients had NCC N HRCaP and received a total of 25 Gy or 30 Gy in five daily fractions of SBRT to the prostate and seminal vesicles followed by robotic RP with pelvic lymphadenectomy 31–45 days later. The primary endpoint was prevalence of acute genitourinary (GU) and gastrointestinal (GI) toxicity. Secondary endpoints were patient-reported quality of life (QOL) and biochemical recurrence (BcR).ResultsThree patients received preoperative SBRT to 25 Gy and four received 30 Gy. Median follow-up was 18 months. Highest toxicity was grade 2 and 3 in six (85.7%) and one (14.3%) patients, respectively. All patients developed grade 2 erectile dysfunction and 4 of 7 (57%) developed grade 2 urinary incontinence (UI) within a month after surgery. One patient developed acute grade 3 UI, but there was no grade ≥ 4 toxicity. One patient experienced acute grade 2 hemorrhoidal bleeding. On QOL, acute GU complaints were common and peaked within 3 months. Bowel symptoms were mild. Two patients with pN+ experienced BcR.ConclusionsPreoperative SBRT before robotic RP in HRCaP is feasible and safe. The severity of acute GU toxicity with preoperative SBRT may be worse than RP alone, while bowel toxicity was mild.  相似文献   

6.
Reversed-phase high performance liquid chromatography (RP HPLC) has been found to be a convenient and powerful tool for the study of the secondary structure of peptides. Here, the ability of proline to perturb the secondary structures of peptides induced at aqueous-lipid interfaces and the induced conformation of polyproline peptides were investigated by means of RP HPLC. For these studies, four different complete sets of substitution analogues of model peptides expected to have specific induced conformations were used. In the first two studies, a single lysine was “walked” through two 18-residue polyproline sequences (one N-acetylated, the other not). In the remaining two studies, a proline was “walked” through two different sequences that had been found earlier to be induced into an α-helical conformation during RP HPLC (an 18-residue polyalanine sequence and the amphipathic 14-residue sequence Ac-LLKLLKKLLKKLKK-NH2). Sixty-eight individual analogues were synthesized for this study and the effect of the respective substitutions on retention times was determined. The results are consistent with the concept that, upon interaction with the C-18 of the stationary phase during RP HPLC, polyproline is induced into a type II helical conformation, polyalanine into an α-helical conformation, and Ac-LLKLLKKLLKKLKK-NH2 into an amphipathic α-helical array. In an extension of this study, the antimicrobial activities of Ac-LLKLLKKLLKKLKK-NH2 and its 18 proline substitution analogues were found to be inversely correlated with their RP HPLC retention times.  相似文献   

7.
Aims: To analyse the effect of cell‐associated peptidases in yogurt starter culture strains Lactobacillus delbrueckii ssp. bulgaricus (LB) and Streptococcus thermophilus (ST) on milk‐protein‐based antimicrobial and hypotensive peptides in order to determine their survival in yogurt‐type dairy foods. Methods and Results: The 11mer antimicrobial and 12mer hypotensive milk‐protein‐derived peptides were incubated with mid‐log cells of LB and ST, which are required for yogurt production. Incubations were performed at pH 4·5 and 7·0, and samples removed at various time points were analysed by reversed‐phase high‐performance liquid chromatography (RP‐HPLC). The peptides remained mostly intact at pH 4·5 in the presence of ST strains and moderately digested by exposure to LB cells. Peptide loss occurred more rapidly and was more extensive after incubation at pH 7·0. Conclusions: The 11mer and 12mer bioactive peptides may be added at the end of the yogurt‐making process when the pH level has dropped to 4·5, limiting the overall extent of proteolysis. Significance and Impact of the Study: The results show the feasibility of using milk‐protein‐based antimicrobial and hypotensive peptides as food supplements to improve the health‐promoting qualities of liquid and semi‐solid dairy foods prepared by the yogurt fermentation process.  相似文献   

8.
9.
Kim S  Kim SS  Lee BJ 《Peptides》2005,26(11):2050-2056
PTP7 is a 13-amino acid residue peptide designed from gaegurin 6, an antimicrobial peptide isolated from skin secretions of Rana rugosa. In order to examine the effect of hydrophobicity on antimicrobial activity, a series of PTP7 derivatives were constructed and analyzed the activity against bacteria and artificial membrane. We found that the mean hydrophobicity by simple summation of hydrophobicity of each constituent amino acid did not necessarily describe the hydrophobic property of antimicrobial peptides. The mean hydrophobicity did not show close correlation with the observed hydrophobicity by measuring reverse phase high performance liquid chromatography (RP HPLC) retention time. The observed hydrophobicity represented as RP HPLC retention time correlated well with the activity against artificial membrane and Gram positive bacterial species, such as Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus luteus, rather than mean hydrophobicity. However, antimicrobial activity against Gram negative bacteria, such as Escherichia coli, did not show correlation with RP HPLC retention time. These data indicate that the RP HPLC retention time should be exploited rather than the mean hydrophobicity in the analysis of the relationship between hydrophobicity and antimicrobial activity.  相似文献   

10.
An efficient and practical analytical method for correcting HPLC retention data has been produced using an HPLC diode-array UV detector system. The system is based on retention indices (RI) and is to be used primarily for the identification of toxicologically relevant drugs involved in clinical and forensic toxicology. The RI correction method was chosen as it provided a slightly greater degree of reproducibility than using relative retention time (RRT), particularly for acidic and neutral drugs. Development of the system involved the establishment of the optimal chromatographic conditions and extensive studies of the stability of the system. An acetonitrile gradient elution was used with RI values determined by interpolation from a series of specifically chosen basic and acidic/neutral marker drugs which eluted at regular intervals to produce a linear RI scale. It was found that two separate RI scales were required for basic and acidic/neutral drugs. The use of multiple drug markers as primary retention index standards had not been previously applied to HPLC general drug screening and comparison with a recently published database suggests that the system may also provide improved selectivity.  相似文献   

11.
The hydrophobiciy and specific hydrophobic surface area of 21 commercial anticancer drugs were determined by reversed-phase high-performance liquid chromatography on an octadecyl-silica column using methanol-water mixtures as eluents. Linear correlations were calculated between the log k′ values and the methanol concentration of the eluent, the intercept and slope were considered as the best estimation of the hydrophobicity and specific hydrophobic surface area. The relationship between retention characteristics and physicochemical parameters of drugs was evaluated by multivariate mathematical statistical methods, such as principal component analysis followed by two-dimensional non-linear mapping, varimax rotation and by cluster analysis. Anticancer drugs can be well separated by reversed-phase HPLC. Various multivariate mathematical statistical calculations indicate that the retention of the investigated drugs is mainly governed by hydrophobic and steric parameters. The results suggest that the use of principal component analysis followed by two-dimensional non-linear mapping is superior to cluster analysis for the evaluation of large retention data matrices.  相似文献   

12.
The nitronate and nitrovinyl methods to synthesize indole glucosinolates (GLs) have been investigated. The results were applied to generally the most prevalent natural indole glucosinolates to synthesize 4-methoxyglucobrassicin (MGB) and neo-glucobrassicin (NGB) in moderate overall yield for the first time. The anti-inflammatory activity of the synthetic indole GLs was determined by inhibition of TNF-α secretion in LPS-stimulated THP-1 cells. The data showed that glucobrassicin (GB) exhibited higher activity than other synthetic indolyl GLs.  相似文献   

13.
Glucosinolates (GLs) present in root, seed, and leaf extracts of Pentadiplandra brazzeana Baillon were characterized and quantified according to the ISO 9167-1 method based on the HPLC analysis of desulfo-GLs. The analyses were complemented by GC-MS analyses of the isothiocyanates (ITCs) generated from GL degradation by myrosinase. Glucotropaeolin (1a), glucolimnanthin (2a), and glucoaubrietin (3a) were shown to be present in the root extract, whereas the seed mainly contained 3a. 3,4-Dimethoxybenzyl GL (4a), glucobrassicin (5a) and traces of 1a were detected in the leaf extract. The products were fully characterized as their desulfo-counterparts by spectroscopic techniques.  相似文献   

14.
A comprehensive on-line sample clean-up with an integrated two-dimensional HPLC system was developed for the analysis of natural peptides. Samples comprised of endogenous peptides with molecular weights up to 20 kDa were generated from human hemofiltrate (HF) obtained from patients with chronic renal failure. The (poly-)peptides were separated using novel silica-based restricted access materials with strong cation-exchange functionalities (SCX-RAM). The size-selective sample fractionation step is followed by cation-exchange chromatography as the first dimension. The subsequent second dimension of separation is based on hydrophobic interaction using four parallel short reversed-phase (RP) columns implemented via a fully automated column switching technique. More than 1000 peaks were resolved within the total analysis time of 96 min. Substances of selected peaks were sampled to analyse their molecular weights by off-line MALDI-TOF mass spectrometry and to determine their amino acid sequence by Edman degradation. The potential for comprehensive peptide mapping and identification is demonstrated.  相似文献   

15.
Glucosinolates (GLs) were characterized in various aerial parts (stems, leaves, and flowers) of Aurinia leucadea (Guss.) C. Koch and quantified according to the ISO 9167-1 official method based on the HPLC analysis of desulfoglucosinolates. Eight GLs, i.e., glucoraphanin (GRA), glucoalyssin (GAL; 1), gluconapin (GNA; 2), glucocochlearin (GCC), glucobrassicanapin (GBN; 3), glucotropaeolin (GTL), glucoerucin (GER), and glucoberteroin (GBE) were identified. The total GL contents were 57.1, 37.8, and 81.3 μmol/g dry weight in the stems, leaves, and flowers, respectively. The major GL detected in all parts of the plant was 2, followed by 1 and 3. GC/MS Analysis of the volatile fractions extracted from the aerial parts of fresh plant material either by hydrodistillation or CH(2) Cl(2) extraction showed that these fractions mostly contained isothiocyanates (ITCs). The main ITCs were but-3-enyl- (55.6-71.8%), pent-4-enyl- (7.6-15.3%), and 5-(methylsulfinyl)pentyl ITC (0-9.5%), originating from the corresponding GLs 2, 3, and 1, respectively. The antimicrobial activity of the volatile samples was investigated by determining inhibition zones with the disk-diffusion method and minimal inhibitory concentrations (MIC) with the microdilution method. They were found to inhibit a wide range of bacteria and fungi, with MIC values of 2.0-32.0 μg/ml, indicating their promising antimicrobial potential, especially against the fungi Candida albicans and Rhizopus stolonifer as well as against the clinically important pathogen Pseudomonas aeruginosa.  相似文献   

16.
The nonconjugal IncQ plasmids pMOL187 and pMOL222, which contain the metal resistance-encoding genes czc and ncc, were introduced by using Escherichia coli as a transitory delivery strain into microcosms containing subsurface-derived parent materials. The microcosms were semicontinuously dosed with an artificial groundwater to set a low-carbon flux and a target metal stress (0, 10, 100, and 1,000 micro M CdCl(2)), permitting long-term community monitoring. The broad-host-range IncPalpha plasmid RP4 was also transitorily introduced into a subset of microcosms. No novel community phenotype was detected after plasmid delivery, due to the high background resistances to Cd and Ni. At fixed Cd doses, however, small but consistent increases in Cd(r) or Ni(r) density were measured due to the introduction of a single pMOL plasmid, and this effect was enhanced by the joint introduction of RP4; the effects were most significant at the highest Cd doses. The pMOL plasmids introduced could, however, be monitored via czc- and ncc-targeted infinite-dilution PCR (ID-PCR) methods, because these genes were absent from the indigenous community: long-term presence of czc (after 14 or 27 weeks) was contingent on the joint introduction of RP4, although RP4 cointroduction was not yet required to ensure retention of ncc after 8 weeks. Plasmids isolated from Ni(r) transconjugants further confirmed the presence and retention of a pMOL222-sized plasmid. ID-PCR targeting the RP4-specific trafA gene revealed retention of RP4 for at least 8 weeks. Our findings confirm plasmid transfer and long-term retention in low-carbon-flux, metal-stressed subsurface communities but indicate that the subsurface community examined has limited mobilization potential for the IncQ plasmids employed.  相似文献   

17.
The importance of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) as effectors of metformin (Met) action on glucose uptake (GU) in skeletal muscle cells was investigated. GU in L6 myotubes was stimulated 2-fold following 16 h of Met treatment and acutely enhanced by insulin in an additive fashion. Insulin-stimulated GU was sensitive to PI3K inhibition, whereas that induced by Met was not. Met and its related biguanide, phenformin, stimulated AMPK activation/phosphorylation to a level comparable with that induced by the AMPK activator, 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR). However, the increase in GU elicited by AICAR was significantly lower than that induced by either biguanide. Expression of a constitutively active AMPK mimicked the effects of AICAR on GU, whereas a dominant interfering AMPK or shRNA silencing of AMPK prevented AICAR-stimulated GU and Met-induced AMPK signaling but only repressed biguanide-stimulated GU by ~20%. Consistent with this, analysis of GU in muscle cells from α1(-/-)/α2(-/-) AMPK-deficient mice revealed a significant retention of Met-stimulated GU, being reduced by ~35% compared with that of wild type cells. Atypical PKCs (aPKCs) have been implicated in Met-stimulated GU, and in line with this, Met and phenformin induced activation/phosphorylation of aPKC in L6 myotubes. However, although cellular depletion of aPKC (>90%) led to loss in biguanide-induced aPKC phosphorylation, it had no effect on Met-stimulated GU, whereas inhibitors targeting novel/conventional PKCs caused a significant reduction in biguanide-induced GU. Our findings indicate that although Met activates AMPK, a significant component of Met-stimulated GU in muscle cells is mediated via an AMPK-independent mechanism that involves novel/conventional PKCs.  相似文献   

18.
A present study was conducted to investigate compatibility of β-blocker drugs( like atenolol, labetalol hydrochloride, bisoprolol fumarate, metoprolol succinate, carvedilol and propranolol hydrochloride) with the pharmaceutical excipient povidone. To check the influence of peroxide impurity present in povidone on the stability of β-blockers, a binary mixture technique has been adopted. The binary mixtures (1:1) of β-blockers with povidone excipient were stored for the duration of 6 months at accelerated conditions (40°C and 75% RH) and analyzed with the technique of high-performance liquid chromatography (HPLC). On analysis, HPLC results shows that, the percentage of total impurity for atenolol—2.15%, bisoprolol fumarate—3.55%, carvedilol—2.19%, and labetalol hydrochloride—1.89%, with respect to povidone. To verify the interaction of H2O2 present in povidone as an impurity, oxidative degradation of selected active pharmaceutical ingredients were performed and degradation profile were compared with that of degradation impurities generated in drug-excipient mixture at accelerated conditions. The relative retention time (RRT) of impurities generated in accelerated stability study samples resembles the RRT of degradation products generated by oxidative degradation of pure drugs. Thus, it confirms that degradation of β-blockers with povidone was mediated by organic peroxides present as an impurity in povidone.  相似文献   

19.
To clarify the structure of non-sialic acid anionic residue on N-glycans in the mammalian tissues, we have isolated sialidase-resistant anionic residue on N-glycans from bovine lung. Analyses by partial acid hydrolysis and glycosidase digestions combined with a two-dimensional HPLC mapping method revealed that the major sialidase-resistant anionic N-glycan had a fucosylbianntenary core structure. The anionic residue was identified as a sulfate ester by methanolysis, anion-exchange chromatography, and mass spectrometry. The linkage position of the sulfate ester was the 6-position of the GlcNAc residue on the Manα1-6 branch. This conclusion was based on the results of glycosidase digestions followed by two-dimensional HPLC mapping. Furthermore, the disialylated form of this sulfated glycan was dominant, and no asialo form was detected. The structure of the major anionic N-glycan prepared from bovine lung and having a sulfate was proposed to be the pyridylamino derivative of Siaα2-3Gαlβ1-4(HSO3-6)GlcNAcβ1-2Manα1-6(Siaα2-3Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAc.  相似文献   

20.
Quinupristin–dalfopristin (30:70, w/w) is a new streptogramin, which has been developed for intravenous use. A specific and sensitive HPLC method was developed to measure simultaneously quinupristin (RP 57669) and dalfopristin (RP 54476) and their main metabolites in human plasma. The metabolites measured by this method were RP 69012 (glutathione-conjugated) and RPR 100391 (cysteine-conjugated) from quinupristin and RP 12536 (natural pristinamycin IIA), from dalfopristin. Solid-phase extraction with disposable cartridges was combined with reversed-phase HPLC and fluorimetric detection for RP 57669, RP 69012 and RPR 100391 and UV detection for RP 54476 and RP 12536. The method provided good recovery and low limits of quantitation (0.025 mg l−1 for RP 57669, RP 54476 and RP 12536, and of 0.010 mg l−1 for RP 69012 and RPR 100391). The validated range of concentrations of the method was: 0.025–5000 mg l−1 for RP 57669, RP 54476 and RP 12536 and 0.010–0.750 mg l−1 for RP 69012 and RPR 100391.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号