首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microorganisms that produce ribavirin (1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide; virazole®) directly from orotidine and 1,2,4-triazole-3-carboxamide (TCA) were screened from our stock cultures. Of the 425 strains, Erwinia carotovora AJ 2992 was found to possess potent ribavirin-producing ability, from orotidine and TCA. In the presence of intact cells of E. carotovora AJ 2992, 183 mm ribavirin was produced from 300 mm orotidine and 300 mm TCA on 48 hr reaction.  相似文献   

2.
The mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 was examined by investigating the properties of the enzymes involved in the hydrolysis of dl-5-substituted hydantoins. The enzymatic production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 involved the following two successive reactions; the d-isomer specific hydrolysis, i.e., the ring opening of d-5-substituted hydantoins to d-form N-carbamyl amino acids by an enzyme, d-hydantoin hydrolase (d-HYD hydrolase), followed by the d-isomer specific hydrolysis, i.e., the cleavage of N-carbamyl-d-amino acids to d-amino acids by an enzyme, N-carbamyl-d-amino acid hydrolase (d-NCA hydrolase).

l-5-Substituted hydantoins not hydrolyzed by d-HYD hydrolase were converted to d-form 5- substituted hydantoins through spontaneous racemization under the enzymatic reaction conditions.

It was proposed that almost all of the dl-5-substituted hydantoins were stoichiometrically and directly converted to the corresponding d-amino acids through the successive reactions of d-HYD hydrolase and d-NCA hydrolase in parrallel with the spontaneous racemization of l-5-substituted hydantoins to those of dl-form.  相似文献   

3.
A bacterium that stereospecifically produces l-valine from 5-isopropylhydantoin was isolated + from soil. It was identified as Bacillus brevis and given the number AJ-12299. l-Valine productivity from l-, d- or dl-5-isopropylhydantoin by B. brevis AJ-12299 was rather low because this bacterium had l-valine degrading-activity. In contrast, the productivity was improved by a mutant the l-valine degradation pathway of which was genetically blocked, and the 5-isopropylhydantoin consumed was stoichiometrically converted to l-valine. The optimal temperature and pH of the reaction were 30°C and 7.0~7.5. The enzyme involved in the reaction was inducible and was strongly induced by the addition of 5-isopropylhydantoin. In addition to l-valine production, this bacterium also produced various aliphatic and aromatic l-amino acids from the corresponding 5-substituted hydantoins.  相似文献   

4.
A new procedure which involves 1-trichloroacetyl sugars as the starting material has been developed for the synthesis of purine nucleosides. 7-β-d-Glucopyranosyl-, 7-β-d-xylopyranosyl-, 7-β-d-ribopyranosyl-theophylline, 9-(tetra-O-acetyl-β-d-glucopyranosyl)-2,6,8-trichloropurine and 9-β-d-glucopyranosyl adenine were prepared in good yields by the reaction in fusion of purine bases with 1-trichloroacetyl sugars, using zinc chloride, p-toluenesulfonic acid, or ethyl polyphosphate as catalyst. 9-d-Ribofuranosyl adenine was also prepared by the same procedures, although the anomeric configuration of the compound is not yet definite. The effect of catalysts on the yields of purine nucleosides is discussed.  相似文献   

5.
2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker’s yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker’s yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.  相似文献   

6.
The reaction conditions for the production of l-tryptophan from dl-5-indolyl- methylhydantoin by Flavobacterium sp. AJ-3940, and the cultural conditions for the formation of the enzyme involved by this bacterium were investigated. The optimal pH of this reaction was around 8.5 and the optimal temperature was between 45 to 55°C. The amount of l-tryptophan produced was remarkably increased by the addition of inosine, which formed a water insoluble adduct with l-tryptophan, to the reaction mixture because of the release of end-product inhibition by l-tryptophan. This enzyme was inducibly and intracellularly produced by Flavobacterium sp. AJ-3940 in proportion to the increase in cell growth. Cells showing high activity were obtained using a medium containing 5 g glucose, 5 g (NH4)2SO4, 1 g KH2PO4, 3 g K2HPO4, 0.1 g MgSO4 · 7H2O, 0.01 g CaCl2 · 2H2O, 50 ml corn steep liquor and 3.5 g dl-5-indolylmethylhydantoin in a total volume of 1 liter (pH 7.0). Under the best conditions, 43 mg/ml of l-tryptophan was produced from 50 mg/ml of dl-5-indolylmethylhydantoin with a molar yield of 97% in the presence of cells of Flavobacterium sp. AJ-3940. In addition, other l-aromatic amino acids such as l-phenylalanine, l-tyrosine, l-DOPA and related l-amino acids were also produced from the corresponding 5-substituted hydantoins by this bacterium containing the l-tryptophan-producing enzyme induced by dl-5-indolylmethylhydantoin.  相似文献   

7.
D-Galactosyl-β1→4-L-rhamnose (GalRha) was produced enzymatically from 1.1 M sucrose and 1.0 M L-rhamnose by the concomitant actions of four enzymes (sucrose phosphorylase, UDP-glucose-hexose 1-phosphate uridylyltransferase, UDP-glucose 4-epimerase, and D-galactosyl-β1→4-L-rhamnose phosphorylase) in the presence of 1.0 mM UDP-glucose and 30 mM inorganic phosphate. The accumulation of GalRha in 1 liter of the reaction mixture reached 230 g (the reaction yield was 71% from L-rhamnose). Sucrose and fructose in the reaction mixture were removed by yeast treatment, but isolation of GalRha by crystallization after yeast treatment was unsuccessful. Finally, 49 g of GalRha was isolated from part of the reaction mixture with yeast treatment by gel-filtration chromatography.  相似文献   

8.
The properties of uridine Phosphorylase (UPase) and purine nucleoside Phosphorylase (PNPase) at high temperature were investigated. Both enzymes were found to be distributed in a wide range of bacteria and were partially purified from Enterobacter aerogenes AJ 11125 by heat treatment, ammonium sulfate fractionation and column chromatographies onDEAE-cellulose and Sephadex G-150. The UPase was purified 109-fold, and it showed an optimum pH of 8.5 and optimum temperature of 65°C, and activity toward uridine, 2′-deoxyuridine, thymidine and uracil arabinoside but not cytidine. The Km values of UPase for uridine were 0.7 mm at 40°C and 1.8 mm at 60°C. The PNPase was purified 83-fold, and it showed an optimum pH of 6.8 and optimum temperature of 60°C, and significant activity toward purine arabinosides as well as purine ribosides. The Km values of PNPase for inosine were 0.8 mm at 40°C and 2.2 mm at 60°C.  相似文献   

9.
Microorganisms that produce ribavirin(1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide; virazole®) directly from pyrimidine nucleosides and TCA (1,2,4-triazole-3-carboxamide) were screened from our stock cultures. Of the 400 strains tested, 16 were isolated as ribavirin-producers from uridine or cytidine. In particular, Enterobacter aerogenes AJ 11125, Bacillus brevis AJ 1282 and Sarcina lutea AJ 1212 were found to possess potent activities of ribavirin production from them. In the presence of intact cells of Enterobacter aerogenes AJ 11125, which was selected as the best strain, 110.2mm and 67.6 mm ribavirin were produced from uridine and cytidine, respectively, on 96 hr reaction at 60°C. In addition, this strain could also produce ribavirin from guanosine, but could not produce it from orotidine, which is also a pyrimidine nucleoside.  相似文献   

10.
The cepA putative gene encoding a cellobiose phosphorylase of Thermotoga maritima MSB8 was cloned, expressed in Escherichia coli BL21-codonplus-RIL and characterized in detail. The maximal enzyme activity was observed at pH 6.2 and 80°C. The energy of activation was 74 kJ/mol. The enzyme was stable for 30 min at 70°C in the pH range of 6-8. The enzyme phosphorolyzed cellobiose in an random-ordered bi bi mechanism with the random binding of cellobiose and phosphate followed by the ordered release of D-glucose and α-D-glucose-1-phosphate. The K m for cellobiose and phosphate were 0.29 and 0.15 mM respectively, and the k cat was 5.4 s-1. In the synthetic reaction, D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, and 6-deoxy-D-glucose were found to act as glucosyl acceptors. Methyl-β-D-glucoside also acted as a substrate for the enzyme and is reported here for the first time as a substrate for cellobiose phosphorylases. D-Xylose had the highest (40 s-1) k cat followed by 6-deoxy-D-glucose (17 s-1) and 2-deoxy-D-glucose (16 s-1). The natural substrate, D-glucose with the k cat of 8.0 s-1 had the highest (1.1×104 M-1 s-1) k cat/K m compared with other glucosyl acceptors. D-Glucose, a substrate of cellobiose phosphorylase, acted as a competitive inhibitor of the other substrate, α-D-glucose-1-phosphate, at higher concentrations.  相似文献   

11.
ω-Amino acid: pyruvate aminotransferase, purified to homogeneity and crystallized from a Pseudomonas sp. F–126, has a molecular weight of 172,000 or 167,000±3000 as determined by the gel-filtration or sedimentation equilibrium method, respectively. The enzyme catalyzes the transamination between various ω-amino acids or amines and pyruvate which is the exclusive amino acceptor. α-Amino acids except l-α-alanine are inert as amino donor. The Michaelis constants are 3.3 mm for β-alanine, 19 mm for 2-aminoethane sulfonate and 3.3 mm for pyruvate. The enzyme has a maximum activity in the pH range of 8.5~10.5. The enzyme is stable at pH 8.0~10.0 and at up to 65°C at pH 8.0. Carbonyl reagents strongly inhibit the enzyme activity. Pyridoxal 5′-phosphate and pyridoxamine 5′-phosphate reactivate the enzyme inactivated by carbonyl reagents. The inhibition constants were determined to be 0.73 mm for d-penicillamine and 0.58 mm for d-cycloserine. Thiol reagents, chelating agents and l-α-amino acids showed no effect on the enzyme activity.  相似文献   

12.
d-Ribose-5-phophate ketol-isomerase (EC 5.3.1,6), d-ribuIose-5-phosphate 3-epimerase (EC 5.1.3.1) and d-sedoheptulose-7-phosphate: d-gIyceraldehyde-3-phosphate glycolaldehyde-transferase (EC 2.2.1,1) have been partially purified. d-Ribose-5-phosphate ketol-isomerase was purified from spinach by column chromatography with DEAE-cellulose and DEAE-Sephadex A-50; d-ribulose-5-phosphate 3-epimerase was purified from baker’s yeast by column chromatography with DEAE-cellulose; and d-sedoheptulose-7-phosphate: d-glyceraldehyde-3-phosphate glycolaldehydetransferase was purified from a Bacillus species No. 102 mutant G3–46–22–6 by column chromatography with DEAE-cellulose. The preparations were used for the determination of the activities of these enzymes in the parent and d-ribose-forming mutants of a Bacillus species.  相似文献   

13.
A newly found methanol-using bacterium, Mycobacterium gastri MB19, is a facultative methylotroph which assimilates methanol via the ribulose monophosphate pathway. 3-Hexulose phosphate synthase was purified from the organism and characterized. This enzyme was found to use glycolaldehyde (Km = 4.3 mm) and methylglyoxal (Km = 5.7 mm) as well as formaldehyde (Km = 1.4 mm) in the presence of d-ribulose 5-phosphate as an acceptor. The product of the condensation of glycolaldehyde with d-ribulose 5-phosphate was isolated by ion-exchange chromatography. The dephosphorylated product was tentatively identified as a heptulose with the molecular formula C7H14O7 from its spectrophotometric properties and GC-MS results.  相似文献   

14.
Abstract

The efficient synthesis of oligonucleotides containing 2′-O-β-D-ribofuranosyl (and β-D-ribopyranosyl)nucleosides, 2′-O-α-D-arabinofuranosyl (and α-L-arabinofuranosyl)nucleosides, 2′-O-β-D-erythrofuranosylnucleosides, and 2′-O-(5′-amino-5-deoxy-β-D-ribofuranosyl)nucleosides have been developed.  相似文献   

15.
The mechanism of stereospecific production of l-amino acids from the corresponding 5-substituted hydantoins by Bacillus brevis AJ-12299 was studied. The enzymes involved in the reaction were partially purified by DEAE-Toyopearl 650M column chromatography and their properties were investigated. The conversion of dl-5-substituted hydantoins to the corresponding l-amino acids consisted of the following two successive reactions. The first step was the ring-opening hydrolysis to N-carbamoyl amino acids catalyzed by an ATP dependent l-5-substituted hydantoin hydrolase. This reaction was stereospecific and the N-carbamoyl amino acid produced was exclusively the l-form. N-Carbamoyl-l-amino acid was also produced from the d-form of 5-substituted hydantoin, which suggests that spontaneous racemization occurred in the reaction mixture. In the second step, N-carbamoyl-l-amino acid was hydrolyzed to l-amino acid by an N-carbamoyl-l-amino acid hydrolase, which was also an l-specific enzyme. The ATP dependency of the l-5-substituted hydantoin hydrolase was supposed to be the limiting factor in the production of l-amino acids from the corresponding 5-substituted hydantoins by this bacterium.  相似文献   

16.
The reaction conditions for the production of d-β-hydroxyphenylglycine (d-HPG) from dl-5-(β-hydroxyphenyl)hydantoin (dl-HPH) by cells of Pseudomonas sp. AJ-11220, and the cultural conditions for this bacterium for the formation of the d-HPG-producing enzyme involved by this bacterium were investigated. The optimal pH of this reaction was about 8.0 and the optimal temperature about 43°C. The d-HPG-producing enzyme was inducibly produced in Pseudomonas sp. AJ-11220 in proportion to the cell growth. Cells containing high activity were obtained when Pseudomonas sp. AJ-11220 was grown in a medium containing 20 g of glucose, 5g of (NH4)2SO4,. 1 g of KH2PO4, 3g of K2HPO4, 0.5g of MgSO4–7H2O, 0.01 g of FeSO4–7H2O, 0.01 g of MnSO4 -4H2O, 10 g of yeast extract, 5g of dl-5-cyanoethylhydantoin and 20 g of CaCO3 in a total volume of 1 liter (pH 7.0). Under the optimal conditions, 25 mg/ml of d-HPG was asymmetrically and directly produced from 30 mg/ml of dl-HPH with a molar yield of 92%. Various d-amino acids could also be effectively produced from the corresponding 5-substituted hydantoins.  相似文献   

17.
During the investigation for dephosphorylation of 4-hydroxy-1-β-D-ribofuranosylpyrazolo-[3,4-d] pyrimidine 5′-phosphate, it was found that the compound was converted to an unknown substance by alkaline hydrolysis for 3 hr at 140°C. The structure of the substance was assigned to be 5-amino-1-β-D-ribofuranosylpyrazole-4-carboxamide 5′-phosphate. 5(or3)-Amino- pyrazole-4-carboxamide and its riboside were also obtained from 4-hydroxypyrazolo [3,4-d] pyrimidine and its riboside, respectively, under the similar conditions.

5-Amino-1-β-D-ribofuranosyipyrazole-4-carboxamide and 5-amino-1-β-D-ribofuranosyl- pyrazole-4-carboxamide 5′-phosphate are new compounds.  相似文献   

18.
An intermediate radical, ?H2OH, was produced in aqueous methanol solution containing nitrous oxide by γ-irradiation. Yields of ethylene glycol and formaldehyde, the major and the minor product from ?H2OH, respectively, changed on the addition of some solutes. Cysteine lowered the both product yields to zero even at a low concentration of 5 × 10?5m. Oxygen of low concentrations (2.5~7.5 × 10?5 m) changed effectively the major product from ethylene glycol to formaldehyde. k (CySH+?H2OH)/k(O2+?H2OH) was calculated as 0.5.

Ascorbic acid (5 × 10?5 m) lowered ethylene glycol yield to 48%, cystine (10?3m) to 15%, methionine (10?3m) to 31%, histidine (10?3m) to 42%, tryptophan (10?3m) 46%, tyrosine (10?3m) to 77%, phenylalanine (10?3m) to 73%, hypoxanthine (10?3m) to 37%, adenine (10?3m) to 52%, uracil (10?3m) to 20%, thymine (10?3m) to 10%, cytosine (10?3 m) to 49%, rutin (10?3m) to 23%, pyrogallol (10?3m) to 41%, and gallic acid (10?3m) to 78% of the control. These results suggest that the reactions of the secondary radicals such as ?H2OH perform an important role in material change of foods irradiated with γ rays.  相似文献   

19.
During the course of studies on the effects of mutation in carbohydrate metabolism on the synthesis of purine derivatives, it was found that three mutants of a Bacillus species, which lacked transketolase or d-ribulose 5-phosphate 3-epimerase, accumulated a large amount of d-ribose in the culture medium. The amount of d-ribose was about 35 mg per ml of the broth incubated for 6 days. d-Ribose in the broth was purified in crystalline form and was identified from its chemical and physical properties.  相似文献   

20.
Biosynthetic threonine deaminase was purified to an apparent homogeneous state from the cell extract of Proteus morganii, with an overall yield of 7.5%. The enzyme had a s020,w of 10.0 S, and the molecular weight was calculated to be approximately, 228,000. The molecular weight of a subunit of the enzyme was estimated to be 58,000 by sodium dodecyl sulfate gel electrophoresis. The enzyme seemed to have a tetrameric structure consisting of identical subunits. The enzyme had a marked yellow color with an absorption maximum at 415 nm and contained 2 mol of pyridoxal 5′-phosphate per mol. The threonine deaminase catalyzed the deamination of l-threonine, l-serine, l-cysteine and β-chloro-l-alanine. Km values for l-threonine and l-serine were 3.2 and 7.1 mm, respectively. The enzyme was not activated by AMP, ADP and ATP, but was inhibited by l-isoleucine. The Ki for l-isoleucine was 1.17 mm, and the inhibition was not recovered by l-valine. Treatment with mercuric chloride effectively protected the enzyme from inhibition by l-isoleucine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号