首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanolamine ammonia-lyase is an adenosylcobalamin-dependent enzyme that catalyzes the rearrangement of ethanolamine and other vicinal amino alcohols to oxo-compounds and ammonia. Treatment of this enzyme with the sulfhydryl group-blocking reagent methyl methanethiosulfonate produces a species with diminished catalytic activity. When methyl methanethiosulfonate -treated ethanolamine ammonia-lyase was incubated with a carboxyl-blocking reagent consisting of glycine ethyl ester plus a water-soluble carbodiimide, the enzyme lost more than 80% of its residual activity, while at the same time glycine ethyl ester was incorporated into it at a stoichiometry of 6 mol/mol of enzyme. Both the loss of activity and the incorporation of glycine ethyl ester were prevented if ethanolamine was included in the glycine ethyl ester-containing incubation mixture. These results suggest that an active site carboxyl group plays a role in the mechanism of catalysis by ethanolamine ammonia-lyase, and that this carboxyl group is amidated when the enzyme is incubated with glycine ethyl ester plus carbodiimide.  相似文献   

2.
Effects of chemical modification of carboxyl groups in the hemolytic lectin CEL-III on its activities were investigated. When carboxyl groups were modified with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and glycine methyl ester, hemolytic activity of CEL-III decreased as the EDC concentration increased, accompanied by reduction of oligomerization ability and hemagglutinating activity. However, binding ability of CEL-III for immobilized lactose was retained fairly well after modification, suggesting that one of two carbohydrate-binding sites might be responsible for such inactivation of CEL-III.  相似文献   

3.
Effects of chemical modification of carboxyl groups in the hemolytic lectin CEL-III on its activities were investigated. When carboxyl groups were modified with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and glycine methyl ester, hemolytic activity of CEL-III decreased as the EDC concentration increased, accompanied by reduction of oligomerization ability and hemagglutinating activity. However, binding ability of CEL-III for immobilized lactose was retained fairly well after modification, suggesting that one of two carbohydrate-binding sites might be responsible for such inactivation of CEL-III.  相似文献   

4.
Two methods employing a water-soluble carbodiimide for carboxyl activation were investigated for the immobilization of biochemicals to succinamidopropyl-porous glass beads. Immobilization using the simultaneous method (simultaneous addition of carbodiimide and nucleophilic ligand to the beads) and large excess of carbodiimide and a small nucleophile should result in covalent binding to all accessible carboxyl groups. Results obtained with glycine methyl ester indicated that 40% of the total surface carboxyl groups were sterically accessible. Using these reaction conditions with the protein, chymotrypsinogen, suggests that a surface monolayer is immobilized. although far fewer sites are required assuming single point attachment. For ligands containing carboxyl groups and several nucleophilic groups (e. g., enzymes), however, biological inactivation may occur using the simultaneous method. Consequently, a sequential method (activation of the surface with carbodiimide followed by washing and addition of the biochemical to be immobilized) was optimized. Using optimal conditions (20 min activation time at pH 4.75 and room temperature; 2 min wash at pH 7 and 0 degrees C) and 0.1M carbodiimide, nearly half of the accessible surface sites remained in the O-acylisourea form and reacted with glycine methyl ester upon its addition. The amount of surface loading as a function of activation time was consistent with a model constructed using rate constants for O-acylisourea formation and hydrolysis previously derived from solution studies with acetic acid [Swaisgood and Natake, J. Biochem 74, 77 (1973)]. Measurement of reaction rates with glycine methyl ester following surface activation suggests that the rate of reaction with amino groups is at least eightfold greater than the hydrolysis rate. Either immobilization procedure gave comparable enzyme loading and specific activities for the case of sulfhydryl oxidase.  相似文献   

5.
A simple, sensitive, accurate and more informative assay for determining the number of modified groups during the course of carboxyl group modification is described. Monomeric carboxymethylcellulase (CMCase) from Aspergillus niger was modified by 1-ethyl-3(3-dimethylaminopropyl)carbodiimide (EDC) in the presence of glycinamide. The different time-course aliquots were subjected to non-denaturing PAGE and the gel stained for CMCase activity. The number of carboxyl groups modified are directly read from the ladder of the enzyme bands developed at given time. This method showed that after 75 min of modification reaction there were five major species of modified CMCases in which 6 to 10 carboxyls were modified.  相似文献   

6.
The carboxyl groups of the bifunctional cellulase–chitosanase (CCBE), purified from a commercial cellulase prepared from Trichoderma viride were modified using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide (EDC). The EDC modified CCBE lost 80–90% of its chitosnase activity and 20% of its carboxylmethyl cellulase (CMCase) activity; meanwhile, its conformation changed slightly, which altered the substrate binding affinity to chitosan, without affecting its binding to CMC. However, the modification did not alter the structure integrity. The dynamic analysis of modification indicated that the CCBE possessed two carboxylates essential for its chitosanase activity and one carboxyl group for its CMCase activity. One of the two carboxylates involved in chitosanase activity was deduced to be the proton donator, and the other may function for substrate recognition, while the only catalytic carboxyl group for CMCase activity probably also acted as a proton donator.  相似文献   

7.
Water-soluble carbodiimide (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) (EDC) and glycine ethyl ester (GEE) as a nucleophile were used to modify the essential carboxyl group of phosphorylases. The inactive b form of the muscle phosphorylase was modified faster than the active a form and potato phosphorylases. Use of N,N,N',N'-tetramethyl-ethylenediamine (TEMED)-HCl buffer system (pH 6.2) resulted in a remarkable difference from the previous results obtained with phosphate and beta-glycerophosphate buffer systems. That is, the substrate glucose 1-phosphate gave the best protection of the three phosphorylase activities. Glucose and glycogen were also effective to retard the inactivation of muscle phosphorylases, though glycogen was not effective for the potato enzyme. The EDC-GEE-modified phosphorylase b retained the affinity for AMP-Sepharose, though partially modified enzyme completely lost the homotropic cooperativity. Phosphorylase b was subjected to differential labeling with [14C]GEE. A labeled peptide was obtained after CNBr cleavage and peptic digestions, and corresponded to the catalytic site sequence surrounding the GEE-substituted Asp 661 and Glu 664. Either or both of these EDC-modified carboxyl residues may have an important role in the catalytic reaction.  相似文献   

8.
When human fibroblast collagenase was incubated with ClCH2CO-(N-OH)Leu-Ala-Gly-NH2 (2-5 mM) in Tris buffer, pH 7.4 at 25 degrees C, a slow, time-dependent inhibition of the enzyme was observed. Dialysis against a buffer to remove free inhibitor did not reactivate the enzyme. A reversible competitive inhibitor, phthaloyl-GlyP-Ile-Trp-NHBzl (50 microM) partially protected the enzyme from inactivation by the compound. From the concentration dependent rates of inactivation Ki = 0.5 +/- 0.1 mM and k3, the rate constant for inactivation = 3.4 +/- 0.3 x 10(-3) min-1 were determined. The inactivation followed the pH optimum (6.5-7.0) for the enzyme activity, suggesting direct involvement of the same active site residue(s). The reaction mode of the inhibitor may be analogous to that of the inactivation of Pseudomonas aeruginosa elastase [Nishino, N. and Powers, J. (1980) J. Biol. Chem., 255, 3482] in which the catalytic glutamate carboxyl was alkylated by the inhibitor after its binding to enzyme through the hydroxamic Zn2+ ligand. All carboxyl groups in the inactivated collagenase were modified with 0.1 M ethyl dimethylaminopropyl carbodiimide/0.5 M glycinamide in 4 M guanidine at pH 5. The inactivator-affected carboxyl group was then regenerated with 1 M imidazole at pH 8.9, 37 degrees C for 12 h and the protein was radiolabeled with 3H-glycine methyl ester and carbodiimide to incorporate 0.9 residue glycine per mol enzyme.  相似文献   

9.
1. Seveal selective reagents were employed to identify the amino acid residues essential for the catalytic activity of sucrase-isomaltase. 2. Modification of histidine, lysine and carboxyl residues resulted in a partial inactivation of the enzyme. Substrates or competitive inhibitors provided protection against inactivation only in the reaction of carboxyl groups with carbodiimide (+lycine ethyl ester) or with diazoacetic ethyl ester. This indicated the occurrence of carboxyl groups at the two active centers of the enzyme complex. 3. Protection against inactivation of the enzyme by carbodiimide was provided also by the presence of alkali and alkaline earth metal ions, which are non-essential activators of sucrase-isomaltase. The presence of Na+ and Ba2+ protected approximately one carboxyl group per active center from reacting with carbodiimide plus glycine ethyl ester. 4. The carbodiimide-reactive groups were not identical with the two carboxylate groups recently found to react with conduritol-B-epoxide, an active-site-directed inhibitor of sucrase-isomaltase (Quaroni, A. and Semenza, G., 1976, J. Biol. Chem 251,3250--3253). A possible role for the carbodiimide-reactive carboxyl groups at the active centers of sucrase-isomaltase is discussed.  相似文献   

10.
Cytochrome c was chemically coupled to cytochrome c oxidase using the reagent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) which couples amine groups to carboxyl residues. The products of this reaction were analyzed on 2.5–27% polyacrylamide gradient gels electrophoretically. Since cytochrome c binds to cytochrome oxidase electrostatically in an attraction between certain of its lysine residues and carboxyl residues on the oxidase surface, EDC is an especially appropriate reagent probe for binding-subunit studies. Coupling of polylysine to cytochrome oxidase using EDC was also performed, and the products of this reaction indicate that polylysine, an inhibitor of the cytochrome c reaction with oxidase, binds to the same oxidase subunit as does cytochrome c, subunit IV in the gel system used.  相似文献   

11.
1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), a water-soluble carbodiimide, inhibited ECF1-F0 ATPase activity and proton translocation through F0 when reacted with Escherichia coli membrane vesicles. The site of modification was found to be in subunit c of the F0 portion of the enzyme but did not involve Asp-61, the site labeled by the hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD). EDC was not covalently incorporated into subunit c in contrast to DCCD. Instead, EDC promoted a cross-link between the C-terminal carboxyl group (Ala-79) and a near-neighbor phosphatidylethanolamine as evidenced by fragmentation of subunit c with cyanogen bromide followed by high-pressure liquid chromatography and thin-layer chromatography.  相似文献   

12.
Glycogen phosphorylase b from rabbit muscle was rapidly inactivated by incubation with 1-cyclohexyl-3-(2-morpholinyl-(4)-ethyl)carbodiimide metho-p-toluenesulfonate (CMC) at pH 5.1. The inactivation was pH-dependent and was not restored by treatment with hydroxylamine. The addition of glycine ethyl ester or N-(2,4-dinitrophenyl)-ethylenediamine (DNP-EDA) markedly increased the rate of inactivation. Of the various amino analogs of glucose tested, only glucosyl amine accelerated the inactivation, although they are all bound to the glucose 1-phosphate site of the enzyme. In the absence of amines, incorporation of about 3 mol of [metho-14C]CMC per protein monomer was observed on complete inactivation. In the presence of DNP-EDA, however, only 2 mol of [metho-14C]CMC and 1 mol of DNP-EDA were incorporated before the activity was completely lost. The treatment of phosphorylase b with CMC did not change the Km values of the enzyme for glucose 1-phosphate and AMP, in spite of the 56% inactivation. It is suggested that, in the phosphorylase-catalyzed reaction, an essential carboxyl group of the enzyme plays a role in the protonation of the glucosidic oxygen of glucose 1-phosphate.  相似文献   

13.
J A Buechler  S S Taylor 《Biochemistry》1990,29(7):1937-1943
The catalytic subunit of cAMP-dependent protein kinase typically phosphorylates protein substrates containing basic amino acids preceding the phosphorylation site. To identify amino acids in the catalytic subunit that might interact with these basic residues in the protein substrate, the enzyme was treated with a water-soluble carbodiimide, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), in the presence of [14C]glycine ethyl ester. Modification of the catalytic subunit in the absence of substrates led to the irreversible, first-order inhibition of activity. Neither MgATP nor a 6-residue inhibitor peptide alone was sufficient to protect the catalytic subunit against inactivation by the carbodiimide. However, the inhibitor peptide and MgATP together completely blocked the inhibitory effects of EDC. Several carboxyl groups in the free catalytic subunit were radiolabeled after the catalytic subunit was modified with EDC and [14C]glycine ethyl ester. After purification and sequencing, these carboxyl groups were identified as Glu 107, Glu 170, Asp 241, Asp 328, Asp 329, Glu 331, Glu 332, and Glu 333. Three of these amino acids, Glu 331, Glu 107, and Asp 241, were labeled regardless of the presence of substrates, while Glu 333 and Asp 329 were modified to a slight extent only in the free catalytic subunit. Glu 170, Asp 328, and Glu 332 were all very reactive in the apoenzyme but fully protected from modification by EDC in the presence of MgATP and an inhibitor peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The role of carboxyl groups on the interaction between ubiquinone-cytochrome c oxidoreductase (Complex III) and cytochrome c has been probed using the two water-soluble carbodiimides EDC (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide) and CMC (1-cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide metho-p-toluensulphonate). The results suggest that: 1) carboxyl groups present on both cytochrome c1 and subunit VIII are modified. Some of these residues are shielded by cytochrome c. 2) The enzyme activity decreases during the carbodiimide treatment and the extent of inhibition is larger in the presence of cytochrome c. 3) Cytochrome c, equimolar with the enzyme, cross-links to cytochrome c1 and subunit VIII via the carbodiimide-activated carboxyl groups. The two subunits appear to be in contact in the isolated enzyme.  相似文献   

15.
NADPH-cytochrome P-450 reductase (EC 1.6.2.4) purified from rat hepatic microsomal fraction was inactivated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a specific agent for modification of carboxyl groups in a protein. The inactivation exhibited pseudo-first order kinetics with a reaction order approximately one and a second-order-rate constant of 0.60 M-1 min-1 in a high ionic strength buffer and 0.08 M-1 min-1 in a low ionic strength buffer. By treatment of NADPH-cytochrome P-450 reductase with EDC, the pI value changed to 6.5 from 5.0 for the native enzyme, and the reductase activity for cytochrome c, proteinic substrate, was strongly inactivated. When an inorganic substrate, K3Fe(CN)6, was used for assay of the enzyme activity, however, no significant inactivation by EDC was observed. The rate of inactivation by EDC was markedly but not completely decreased by NADPH. Also, the inactivation was completely prevented by cytochrome c, but not by K3Fe(CN)6 or NADH. The sulfhydryl-blocked enzyme prepared by treatment with 5,5'-dithio-bis(2-nitrobenzoic acid), which had no activity, completely recovered its activity in the presence of dithiothreitol. When the sulfhydryl-blocked enzyme was modified by EDC, the enzyme in which the carboxyl group alone was modified was isolated, and its activity was 35% of the control after treatment with dithiothreitol. In addition, another carboxyl reagent, N-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward reagent K), decreased cytochrome c reductase activity of NADPH-cytochrome P-450 reductase. These results suggest that the carboxyl group of NADPH-cytochrome P-450 reductase from rat liver is located at or near active-site and plays a role in binding of cytochrome c.  相似文献   

16.
 蚕豆β-半乳糖苷酶活性必需氨基酸残基分析龚笑海,孙册(中国科学院上海生物化学研究所,上海200031)化学修饰作为一种研究酶活性基团的方法,对研究糖苷酶的催化机理有其独到的优点,并已有这方面的报道.从蚕豆纯化的β-半乳糖苷酶,分子量为70kD,由两个...  相似文献   

17.
Chemical modifications with water-soluble carbodiimides (EDC and CMC) were performed to elucidate whether some carboxyl residues are involved in the catalytic activity of membrane-bound pyrophosphatase ofRhodospirillum rubrum. EDC and CMC cause a loss of hydrolytic activity following pseudo-first-order kinetics up to 10 min of reaction. The enzyme was completely protected against EDC inhibition by PPi or Mg2+, whereas PPi or Mg2+ gave partial protection against CMC inactivation. Mg-PPi protected completely against the inhibition caused by both carbodiimides. These data suggest that the carboxyl moiety modified by EDC is at the active site. At longer times of inactivation with both carbodiimides, we could not observe a linear relationship in semilogarithmic plots of residual activity versus time, indicating that at least two carboxyls are involved in the inactivation, which correlates with the partial protection against CMC inactivation by PPi. We found that the activator site for Mg2+ is apparently at or near the active site of the enzyme. This is supported by the fact that PPi protects completely the activator effect of this divalent cation.  相似文献   

18.
The amino acid residue(s) involved in the activity of buckwheat α-glucosidase was modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the presence of glycine ethyl ester. The modification resulted in the decrease in the hydrolytic activity of the enzyme following pseudo-first order kinetics. Competitive inhibitors, such as Tris and turanose, protected the enzyme against the inactivation. Protection was provided also by alkali metal, alkaline-earth metal and ammonium ions, though these cations are non-essential for the activity of the enzyme. Turanose or K+ protected one carboxyl group per enzyme from the modification with carbodiimide and glycine ethyl ester. Free sulfhydryl group of the enzyme was also partially modified with carbodiimide, but the inactivation was considered to be mainly attributed to the modification of essential carboxyl group rather than to that of free sulfhydryl group.  相似文献   

19.
1. A carboxyl group of high reactivity has been found in inorganic pyrophosphatase (pyrophosphate phosphohydrolase, EC 3.6.1.1) from yeast. This group interacts with agents which react neither with carboxyl groups of low molecular weight compounds nor with other carboxyl groups of the protein. 2. The reaction of this activated carboxyl group with inorganic phosphate, hydroxylamine, N-methyl- and O-methylhydroxylamines, and glycine methyl ester has been studied. 3. Homoserine and homoserine lactone were found in the hydrolyzate of phosphorylated and NaBH4-reduced pyrophosphatase, indicating that an aspartyl residue is phosphorylated. 4. Hydroxylamine and other nucleophilic agents cause inactivation of pyrophosphatase as a result of interaction with a carboxyl group. Both diaminobutyric and diaminopropionic acids were seen in the acid hydrolyzate of the protein treated with hydroxylamine and subjected to rearrangement in the presence of carbodiimide. 5. The ways in which the activation of a carboxyl group in the enzyme is achieved and the presumed mechanism of action of inorganic pyrophosphatase are discussed.  相似文献   

20.
The carboxyl group in a ribonuclease from Rhizopus sp. (RNase Rh) was modified by a water-soluble carbodiimide, 1-cyclohexyl-3-(2-morpholinyl-(4)-ethyl)carbodiimide p-toluenesulfonate (CMC). From the relation between the extent of modification and the enzymatic activity, it was concluded that at least the modification of two carboxyl groups seemed to induce the loss in enzymatic activity. In the presence of 1 M cytidine, RNase Rh activity was protected from the CMC-modification. Under conditions in which the enzyme was inactivated to 20% activity, about 70% of the enzymatic activity was retained in the presence of cytidine. The inactivation of the RNase Rh pre-treated with CMC in the presence of cytidine with [14C]CMC indicated that the RNase Rh lost its enzymatic activity with the incorporation of about one [14C]CMC. Therefore, it could be concluded that one carboxyl group is involved in the active site of RNase Rh. The binding of the CMC-modified RNase Rh with 2'-AMP was studied spectrophotometrically. The affinity of the modified RNase Rh towards 2'-AMP decreased markedly upon CMC modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号