首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two similar tetrasaccharides, one neutral and one acidic, were isolated from the products released by the attack of a xylanase on the in situ reduced 4-O-methyl-D-glucurono-D-xylan from aspen (Populus tremuloides). Paper chromatography, gel filtration behavior, methylation followed by reduction, and mass spectrometry showed that the oligosaccharides were O-(4-O-methyl-α-D-glucopyranosyluronic acid)-(1→2)-D-xylotriose and-O-(4-O-methyl-α-D-glucopyranosyluronic acid)-(1→2)-D-xylotriose. Independent of the acidic or neutral substituent on the present xylan chain, the enzymic cleavage led preferentially to oligosaccharides substituted at the nonreducing end. The existence, in wood, of a few uronic acid substituents of the D-xylan in the esterified form was confirmed, and their linkage to lignin postulated.  相似文献   

2.
The husk from the seeds of Plantago ovata Forsk yielded two fractions when exposed to mild aikali, namely, the mucilage polysaccharide (85%, apparently a single species) and the non-polysaccharide component (15%). Methylation analysis and partial hydrolysis with acid showed the mucilage polysaccharide to be a highly branched, acidic arabinoxylan, the xylan backbone having both (1→4) and (1→3) linkages. The majority of the residues in the xylan backbone are variously substituted at O-2 and O-3 with arabinose, xylose, and an aldobiouronic acid identified as 2-O-(galactopyranosyluronic acid)-rhamnose. A structure incorporating these features for the husk polysaccharide is proposed.  相似文献   

3.
An acidic xylan was isolated from the extracellular polysaccharides of suspension-cultured tobacco cells. Its structure was investigated by methylation analysis and 13C NMR spectroscopy and was shown to consist of a main chain of β-(1→4)-linked D-xylopyranosyl residues to which were attached as side-chains, α-D-glucuronic acid residues at O-2.  相似文献   

4.
We investigated the structures of L-arabino-galactooligosaccharides released from the sugar moieties of a radish arabinogalactan-protein (AGP) by the action of exo-β-(1→3)-galactanase. We detected a series of neutral β-(1→6)-linked galactooligosaccharides forming branches of one to up to at least 19 consecutive Gal groups, together with corresponding acidic derivatives terminating in 4-O-methyl-glucuronic acid (4-Me-GlcA) at the non-reducing end. Some oligosaccharide chains of degree of polymerization (dp) higher than 3 for neutral, and 4 for acidic oligomers were modified with L-Araf residues. The acidic tetrasaccharide 4-Me-β-GlcA-(1→6)[α-L-Araf-(1→3)]-β-Gal-(1→6)-Gal was detected as an abundant L-Araf-containing oligosaccharide among these neutral and acidic oligomers. A pentasaccharide containing an additional L-Araf group attached to the L-Ara in the tetrasaccharide through an α-(1→5)-linkage was also found. We observed L-arabino-galactooligosaccharides substituted with single or disaccharide L-Araf units at different Gal residues along these neutral and acidic β-(1→6)-galactooligosaccharide chains, indicating that these side chains are highly variable in length and substituted variously with L-Araf residues.  相似文献   

5.
The structures of acidic oligosaccharides synthesized by a transglycosylation reaction by Bacillus circulans β-galactosidase, using lactose as the galactosyl donor, and N-acetylneuraminic acid (NeuAc) and glucuronic acid (GlcUA) as the acceptors were investigated. Acidic oligosaccharides thus synthesized were purified by anion exchange chromatography and charcoal chromatography. The MS and NMR studies indicated that the acidic oligosaccharides from NeuAc were Galβ-(1→8)-NeuAc, Galβ-(1→9)-NeuAc, and Galβ-(1→3)-Galβ-(1→8)-NeuAc, and those from GlcUA were Galβ-(1→3)-GlcUA and Galβ-(1→4)-Galβ-(1→3)-GlcUA. These are novel acidic galactooligosaccharides.  相似文献   

6.
The mannose residue in (Man)1 (GlcNAc)2-Asn obtained by a Smith degradation of the acidic glycopeptide from porcine thyroglobulin was found to be insusceptible to α-mannosidase. This residue was hydrolyzed, however, by purified β-mannosidase. After β-mannosidase treatment, the resulting (GlcNAc)2-Asn was compared with synthetic glycosyl-asparagine derivatives. From these experiments, the core structure of the acidic glycopeptide was proposed to be β-Man-(1 → 3 or 4)-β-GlcNAc-(1 → 4)-GlcNAc-Asn.  相似文献   

7.
Xylanase A from the phytopathogenic bacterium Erwinia chrysanthemi is classified as a glycoside hydrolase family 30 enzyme (previously in family 5) and is specialized for degradation of glucuronoxylan. The recombinant enzyme was crystallized with the aldotetraouronic acid β-D-xylopyranosyl-(1→4)-[4-O-methyl-α-D-glucuronosyl-(1→2)]-β-D-xylopyranosyl-(1→4)-D-xylose as a ligand. The crystal structure of the enzyme-ligand complex was solved at 1.39 ? resolution. The ligand xylotriose moiety occupies subsites -1, -2 and -3, whereas the methyl glucuronic acid residue attached to the middle xylopyranosyl residue of xylotriose is bound to the enzyme through hydrogen bonds to five amino acids and by the ionic interaction of the methyl glucuronic acid carboxylate with the positively charged guanidinium group of Arg293. The interaction of the enzyme with the methyl glucuronic acid residue appears to be indispensable for proper distortion of the xylan chain and its effective hydrolysis. Such a distortion does not occur with linear β-1,4-xylooligosaccharides, which are hydrolyzed by the enzyme at a negligible rate. DATABASE: Structural and experimental data are available in the Protein Data Bank database under accession number 2y24 [45].  相似文献   

8.
Partial hydrolysis of a larch arabino(4-O-methylglucurono)xylan afforded two series of oligouronides composed of 4-O-methyl- d-glucuronic acid and d-xylose residues. The first series included aldouronic acids up to the aldopentaouronic acid. Methylation analysis indicated that the aldopentao- and aldotetrao-uronic acids were mixtures of isomers. One aldotetraouronic acid was isolated and identified as O-β-d-Xylp-(1 → 4)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-d-Xyl. The two isomeric aldotriouronic acids were separated from each other. The acids of the second series, which were composed of two uronic acids and 2-4 d-xylose residues, were identified as follows: O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-d-Xyl, O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-β-d -Xylp-(1 → 4)-D-Xyl, O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Mec-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-D-Xyl, and O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-D-Xyl. The first three compounds were new acidic oligosaccharides. The 4-O-methyl-d-glucuronic acid in the second series was present in a larger proportion than in the first series, indicating that a large proportion of the uronic acid side-chains were located on two contiguous D-xylose residues in the backbone of the softwood xylan.  相似文献   

9.
Optial rotatory dispersion (ORD) and Circular dichroism (CD) spectra of several β-1,4 xylan and cellulose acetates and some of their oligomers were investigated. The CD spectra proved considerably superior in terms of information content and interpretability. Comparison of the xylan and cellulose acetate series which also included partially substited cellulose acetates showed that the sign of the CD of the C(6) acetyl was negative. Likewise, the combined contribution of C(1) and C(4) to their equatorially substituted acetyls was positive (with C(1) definitely Positive) and the combined contribution of C(2)eq and C(3)eq negative. The solution conformations of both polysaccharide acetates appeared to be random. The CD of White birch xylan acetate which is substituted on the average at every tenth residue with a 4-O-methyl glucuronic acid substituent, was sensitive to it. The xylan oligomer series also illustrated that CD may be used to determine the degree of polymerization of these oligomers up to about 20.  相似文献   

10.
The partially degraded polysaccharide obtained by means of mild acid hydrolysis of APS–I, an acidic polysaccharide in soy sauce, was incubated with an endo-polygalacturonase, and some acidic sugars liberated were fractionated and purified from the enzymatic hydrolyzate. They were identified as d-galacturonic acid (Gal A), its α-l,4-linked dimer and trimer, d-xylose (Xyl) β1→3 Gal A and Xyl β1→3 Gal A α1→4 Gal A, and an acidic polymer composed of the above-mentioned sugars through methylation analysis and other methods.

Methyl-esterized APS–I was subjected to β-elimination with pectin lyase or by heat treatment. The high molecular fraction which was highly resistant to β-elimination, was concluded to be β-1,4-linked d-galactan of which reducing-end group was attached to d-galacturonic acid. On the basis of these findings and previous knowledges, the construction of APS–I was also discussed.  相似文献   

11.
The O-glycosidically-linked carbohydrate units of glycophorin from bovine erythrocyte membrane were released by alkaline borohydride treatment. These oligosaccharides were separated into the neutral fractions and the acidic fractions by ion-exchange chromatography followed by gel filtration. The two acidic fractions (fractions 10 and 13) which have the smallest molecular weight in acidic oligosaccharides, were further purified by gel filtration on Bio-Gel P-4 column. Two acidic oligosaccharides (fractions 10-I and 10-II), heptasaccharides, were separated by gel filtration on a Bio-Gel P-4 column from fraction 10. These structures were determined by methylation analyses, nitrous acid deamination after hydrazinolysis and Smith degradation after desialylation. In addition, the structures were also analyzed by direct-probe mass spectrometry of the permethylated derivatives before and after desialylation. These studies indicated that one of them (fraction 10-I) was NeuNGcα(2→3)Galβ(1→4)GlcNAcβ(1→3)Galβ(1→4)GlcNAcβ(1→3)Galβ(1→3) GalNAcol and another heptasaccharide (fraction 10-II) was Galβ(1→4)GlcNAcβ(1→3)Galβ(1→3) [NeuNGcα(2→3)Galβ(1→4)GlcNAcβ(1→6)]GalNAcol. Athough another acidic fraction (fraction 13) was obtained as a single peak on a Bio-Gel P-4 column, it appeared to be the mixture of a heptasaccharide, NeuNGcα(2→3)Galβ(1→4)GlcNAcβ(1→3 or 6)[Galβ(1→4)GlcNAcβ(1→6 or 3)]Galβ(1→3)GalNAcol and an oligosaccharide similar to fraction 10-II, by analysis of two products obtained by Smith degradation after desialylation.  相似文献   

12.
The enzymatic degradation of β(1 → 4) xylan single crystals with xylanases was investigated by electron microscopy and electron diffraction. The enzyme attack takes place at the edge of the crystals and progresses towards their centers. This is consistent with an endo-enzyme mechanism, where the enzyme interacts essentially with the accessible xylan chains located at the crystal periphery.  相似文献   

13.
An acidic polysaccharide isolated from the seeds of Ocimum basilicum by DEAE-cellulose fractionation was ~92% pure, having an associated glucan impurity (~8%). The polysaccharide is composed of d-xylose, l-arabinose, l-rhamnose, and d-galacturonic acid in the molar ratios 15:9:7:12, together with traces or galactose and glucose. Methylation analysis indicated that the polysaccharide contained a (1→4)-linked xylan backbone carrying branch-points at C-2 and C-3 of the xylosyl residues, and revealed the structural features of the side chains. Periodateoxidation and Smith-degradation studies support the results of methylation analysis.  相似文献   

14.
Polysaccharides are rich in Panax notoginseng residue after extraction. This study aims to explore the structural characteristics of PNP-20, which is a homogeneous polysaccharide, separated from P. notoginseng residue by fractional precipitation and evaluate the anti-enteritis effect of PNP-20. The structure of PNP-20 was determined by spectroscopic analyses. A mouse model with enteritis induced by restraint stress (RS) and lipopolysaccharide (LPS) was used to evaluate the pharmacological effect of PNP-20. The results indicated that PNP-20 consisted of glucose (Glc), galactose (Gal), Mannose (Man) and Rhamnose (Rha). PNP-20 was composed of Glcp-(1→, →4)-α-Glcp-(1→, →4)-α-Galp-(1→, →4,6)-α-Glcp-(1→, →4)-Manp-(1→ and →3)-Rhap-(1→, and contained two backbone fragments of →4)-α-Glcp-(1→4)- α-Glcp-(1→ and →4)-α-Galp-(1→4)-α-Glcp-(1→. PNP-20 reduced intestinal injury and inflammatory cell infiltration in RS- and LPS-induced enteritis in mice. PNP-20 decreased the expression of intestinal tumor necrosis factor-α, NOD-like receptor family pyrin domain containing 3, and nuclear factor-κB and increased the expression of intestinal superoxide dismutase 2. In conclusion, PNP-20 may be a promising material basis of P. Notoginseng for the treatment of inflammatory bowel disease.  相似文献   

15.
Two pure, acidic polysaccharides have been isolated from the hemicellulose of slash pine in yields of 1–2% and 4–5%. Their properties are compared, and the structure of one of them has been investigated by methylation analysis. The results indicate that the glycan is a β-D-(1→4)-linked xylan chain with many branch points. 4-O-Methyl-D-glucopyranosyluronic acid, L-arabinofuranose, and D-xylopyranose residues occur as non-reducing end groups. The uronic acid occurs as single-unit attachments to the main chain. Some of the D-xylose residues in the polysaccharide are doubly branched. The total hemicellulose components of the wood probably represent a complex mixture of chemical types, from which the two pure fractions described above may be separated fortuitously by careful, fractional precipitation.  相似文献   

16.
Three kinds of xylo-oligosaccharides having structures of 32-β-xylosylxylobiose, 32-β-xylobiosylxylobiose, and 22-β-xylobiosylxylobiose were isolated from an enzymatic hydrolysate of hardwood xylan with Streptomyces β-xylanase. The structures suggest that the hardwood xylan has both (1 → 2)- and (1 → 3)-β-d-xylopyranosyl linkages in the structure, and the specificity of Streptomyces β-xylanase toward the stubs is similar to that toward glucuronic acid stubs, but is somewhat different from that toward arabinose and xylosylarabinose stubs.  相似文献   

17.
《Carbohydrate research》1988,172(2):217-227
Cell-wall fractions have been prepared from an alcohol-insoluble-residue of carrot root by treatment with (a) Pronase to remove the cytoplasmic proteins, (b) hot dilute acid and cold dilute alkali to give pectin-free residues, and (c) concentrated alkali to leave the α-cellulose and lignin. The purified cell-wall material still contained ∼ 1% protein and was composed mainly of cellulose, lignin, methyl-esterified galacturonic acid, and smaller amounts of galactose and arabinose. Methylation analysis of the insoluble residues indicated the presence, in order of decreasing concentration, of rhamnogalacturonan with the rhamnosyl residues carrying side chains at position 4, cellulose, (1→4)-linked galactan, (1→5)-linked arabinan, (1→4)-linked xylan, (1→4)-linked mannan, and xyloglucan.  相似文献   

18.

Most studies of the mode of action of industrially important endoxylanases have been done on alkali extracted-plant xylan. In just few cases, the native form of the polysaccharide, acetylated xylan, was used as a substrate. In this work action of xylanases belonging to three glycoside hydrolase families, GH10, GH11, and GH30 was investigated on acetylglucuronoxylan directly in hardwood cell walls. Powdered eucalyptus wood was used as xylanase substrate. Enzyme-generated fragments were characterized by TLC, MALDI ToF MS, and NMR spectroscopy. All three xylanases generated from eucalyptus wood powder acetylated xylooligosaccharides. Those released by GH10 enzyme were the shortest, and those released by GH30 xylanase were of the largest diversity. For GH30 xylanase the 4-O-methyl-D-glucuronic acid (MeGlcA) side residues function as substrate specificity determinants regardless the acetylation of the neighboring hydroxyl group. Much simpler xylooligosaccharide patterns were observed when xylanases were applied in combination with carbohydrate esterase family 6 acetylxylan esterase. In the presence of the esterase, all aldouronic acids remained 3-O-acetylated on the xylopyranosyl (Xylp) residue substituted with MeGlcA. The 3-O-acetyl group, in contrast to the acetyl groups of otherwise unsubstituted Xylp residues, does not affect the mode of action of endoxylanases, but contributes to recalcitrance of the acidic xylan fragments. The results confirm importance of acetylxylan esterases in microbial degradation of acetylated hardwood glucuronoxylan. They also point to still unresolved question of efficient enzymatic removal of the 3-O-acetyl group on MeGlcA-substituted Xylp residues negatively affecting the saccharification yields.

  相似文献   

19.
The sugar chains of microsomal and lysosomal β-glucuronidases of rat liver were studied by endo-β-N-acetylglucosaminidase H digestion and by hydrazinolysis. Only a part of the oligosaccharides released from microsomal β-glucuronidase was an acidic component. The acidic component was not hydrolyzed by sialidase and by calf intestinal and Escherichia coli alkaline phosphatases, but was converted to a neutral component by phosphatase digestion after mild acid treatment indicating the presence of a phosphodiester group. The neutral oligosaccharide portion of microsomal enzyme was a mixture of five high mannose-type sugar chains: (Manα1 → 2)0~4 [Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc]. In contrast, lysosomal enzyme contains only Manα1 → 6 (Manα1 → 3) Manα1 → 6(Manα1 → 3) Manβ1 → 4GlcNAcβ1 → 4GlcNAc. The result indicates that removal of α1 → 2-linked mannosyl residues from (Manα1 → 2)4[Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc → Asn] starts already in the endoplasmic reticulum of rat liver.  相似文献   

20.
《Carbohydrate research》1988,172(2):229-242
Pectic and hemicellulosic polysaccharides were successively extracted from an alcohol-insoluble residue (AIR) from carrot root by the actions of Pronase, hot dilute acid, cold dilute alkali, and concentrated alkali in yields corresponding to 12.6, 13.5, 21.7, and 6.7% of AIR, respectively. The first two products were fractionated further by ion-exchange chromatography. Carrot pectins contained 61.3–66.0% of galacturonic acid and 16.0–19.9% of neutral sugars, mainly galactose, arabinose, and rhamnose. Except for the alkali-soluble pectins, the degrees of methylation were high (62.9–67.1) and there was a significant degree of acetylation (7.2–13.5). Pectin fractions were homogeneous in gel-filtration chromatography with viscosity-average molecular weights varying between 36,200 and 56,500. Methylation analysis indicated the presence of arabinogalactans in the pectins extracted during the proteolysis, and fairly long chains of (1→4)-linked galactan with a branched arabinan in the two other pectic fractions. The hemicellulose fraction was mainly composed of (1→4)-linked glucan, (1→4)-linked mannan, (1→4)-linked xylan, and small but significant amounts of pectic polysaccharides. The possible association of cell-wall polymers is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号