首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 792 毫秒
1.
The mutagenicity and desmutagenicity of extracts of soybeans heated at 225 ± 5°C were investigated by the Ames test. The soybeans were refluxed in water, methanol, or diethylether for 2h. The aqueous and methanol extracts (2–4 mg/plate) of the heated soybeans exhibited strong desmutagenic activity of 43–92% against heterocyclic amines (Trp-P-1, Glu-P-2, IQ, MeIQx, PhIP), while no mutagenicity was observed. The desmutagenicity of the heated soybean extracts remained even after denaturation by 0.1 N HCI in vitro and absorption by the rat small intestine. The desmutagenic mechanism for heated soybeans was evaluated, and it was verified that the soybean extract exhibited its desmutagenicity by blocking the mutagenicity of activated Trp-P-1, and not by inhibiting the S9 enzyme system.  相似文献   

2.
The desmutagenic effects of alpha-hydroxycarbonyl compounds, such as glyceraldehyde, glycolaldehyde, dihydroxyacetone, furfural, 5-hydroxymethylfurfural, maltol, acetol and acetoin and alpha-dicarbonyl compounds, such as diacetyl, glyoxal, methyl glyoxal and 2,3-pentanedione were investigated against the mutagenic heterocyclic amines, such as Trp-P-1, Trp-P-2, Glu-P-1, Glu-P-2 and IQ. Most of the carbonyl compounds suppressed the mutagenicity of heterocyclic amines for S. typhimurium TA98, alpha-dicarbonyl compounds showing a higher desmutagenic effect than alpha-hydroxycarbonyl compounds. Among the alpha-hydroxycarbonyl compounds, glyceraldehyde, glycolaldehyde and dihydroxyacetone showed more effective desmutagenicity, and diacetyl among the alpha-dicarbonyl compounds had the highest desmutagenic effect. These carbonyl compounds alone also showed mutagenicity to S. typhimurium TA100 without S9 mix. The reaction of carbonyl compounds with mutagenic heterocyclic amines also eliminated the mutagenicity of the former for S. typhimurium TA100.  相似文献   

3.
Incubation of isolated rat hepatocytes with tert-butylhydroperoxide resulted in marked cytotoxicity preceded by intracellular glutathione depletion and extensive lipid peroxidation. Addition of antioxidants delayed, but did not prevent, this toxicity. A significant decrease in protein-free sulfhydryl groups also, occurred in the presence of tert-butylhydroperoxide; direct oxidation of protein thiols and mixed disulfide formation with glutathione were responsible for this decrease. The involvement of protein thiol depletion in tert-butylhydroperoxide–induced cytotoxicity is suggested by our observation that administration of dithiothreitol, which caused re-reduction of the oxidized sulfhydryl groups and mixed disulfides, efficiently protected the cells from toxicity. Moreover, depletion of intracellular glutathione by pretreatment of the hepatocytes with diethyl maleate accelerated and enhanced the depletion of protein thiols induced by tert-butylhydroperoxide and potentiated cell toxicity even in the absence of lipid peroxidation.  相似文献   

4.
The mutagenicity for Salmonella typhimurium TA100 without S9 mix of Maillard reaction products (MRP) obtained from equimolar amounts of glucose and amino acids under different pHs was investigated. MRP derived from arginine and lysine exhibited the strongest mutagenicity, and weaker mutagenicity was shown by the mixtures with alanine, serine, threonine and monosodium glutamate. MRP from proline and cysteine had no detectable mutagenicity. Furthermore, glucose-arginine and glucose-lysine reaction mixtures, which presented a marked mutagenicity, showed pH- and browning intensity-dependent expression of their mutagenic activities. The mutagenicity of MRP, especially glucose-arginine and glucose-lysine mixtures, was significantly suppressed by active oxygen scavengers such as cysteine, mannitol, alpha-tocopherol, catalase and superoxide dismutase (SOD) and reducing agents such as sodium bisulfite and glutathione. Among these desmutagenic factors tested, cysteine, catalase, sodium bisulfite and glutathione had higher desmutagenic activities than the others. Accordingly, it is assumed that the mutagenicity of MRP is due to the direct action of low-molecular-weight compounds such as carbonyls and heterocyclics produced by the Maillard reaction and is enhanced by active oxygens, especially singlet oxygen and hydrogen peroxide derived from their autoxidation.  相似文献   

5.
The desmutagenic activity of various food components on C-nitro mutagens formed by the nitrite/sorbic acid reaction was assayed and several vegetable juices were found to be effective for eliminating the mutagenicity of the nitrite/sorbic acid system. Especially, the desmutagenic activity of pumpkin juice was investigated, and ascorbic acid, cysteine and other reducing compounds were found to be responsible for desmutagenic actions on 1,4-dinitro-2-methyl pyrrole, the main mutagen formed by the reaction of sorbic acid with sodium nitrite, by reduction of the conjugated C-nitro group to a C-amino group.  相似文献   

6.
Summary A convenient method for the synthesis of symmetric and asymmetric diamides of amino acids including DOPA and citric acid from 2-tert-butyl-1,3-di(N-hydroxysuccinimidyl)citrate and 1-tert-butyl-2,3-di(N-hydroxysuccinimidyl)citrate is described.Abbreviations AcOtBu tert-butyl acetate - i-Bu iso-butyl - tBu tert-butyl - Bzl benzyl - p-OH-Bzl p-hydroxybenzyl - m,p-(OH)2-Bzl m,p-dihydroxybenzyl - DCCI dicyclohexylcarbodiimide - Et ethyl - Me methyl - Su succinimidyl - SuOH N-hydroxysuccinimide - Ph phenyl  相似文献   

7.
The possible protective effect of a suberin extract from Quercus suber cork on acridine orange (AO)-, ofloxacin- and UV radiation-induced mutagenicity (bleaching activity) in Euglena gracilis was examined. To our knowledge, the present results are the first attempt to analyse suberin in relation to mutagenicity of some chemicals. Suberin exhibits a significant dose-dependent protective effect against AO-induced mutagenicity and the concentration of 500 μg/ml completely eliminates the Euglena-bleaching activity of AO. The mutagenicity of ofloxacin is also significantly reduced in the presence of suberin (125, 250 and 500 μg/ml). However, the moderate protective effect of suberin on UV radiation-induced mutagenicity was observed only at concentrations 500 and 1000 μg/ml. Our data shows that suberin extract from Q. suber cork possess antimutagenic properties and can be included in the group of natural antimutagens acting in a desmutagenic manner.  相似文献   

8.
The present study reports cytoprotective and antioxidant activity of aqueous and alcoholic extracts of Rhodiola imbricata rhizome on tert-butyl hydroperoxide (tert-BHP) induced cytotoxicity in U-937 human macrophages. There was an increase in cytotoxicity and apoptosis significantly in the presence of tert-BHP over control cells. The tert-BHP induced cytotoxicity can be attributed to enhanced reactive oxygen species (ROS) production which in turn is responsible for fall in reduced glutathione (GSH) levels; further there was a significant decrease in mitochondrial potential and increase in apoptosis and DNA fragmentation. Both aqueous and alcoholic extracts of Rhodiola rhizome at a concentration of 250 μg/ml were found to inhibit tert-BHP induced free radical production, apoptosis and to restore the anti-oxidant levels to that of the control cells. The alcoholic extract of Rhodiola showed higher cytoprotective activities than aqueous extract. These observations suggest that the alcoholic and aqueous extracts of Rhodiola have marked cytoprotective and antioxidant activities.  相似文献   

9.
Sulfhydryl groups are important to avoid oxidative damage to the cell. In RBC, tert-butyl hydroperoxide (tert-BOOH) and hydrogen peroxide (H2O2) are capable of oxidizing heme and promoting lipid peroxidation. H2O2 caused greater oxidation of heme than tert-BOOH, although the oxidation of sulfhydryl groups was similar. Geochelone carbonaria Hb, a rich sulfhydryl protein, inhibited the TBA-reactive substances formation of human erythrocytes exposed to tert-BOOH by about 30%; this decrease was smaller with Geochelone denticulata Hb. Sulfhydryl reagents diminished the number of reactive sulfhydryl groups in the G. carbonaria Hb resulting in a decrease of its antioxidant power, suggesting the involvement of sulfhydryls of Hb in the protection against lipid peroxidation.  相似文献   

10.
Two unicellular marine algae cultured in media containing sodium selenite were examined for glutathione peroxidase activity. The 400 g supernatant from disrupted cells of both the green alga Dunaliella primolecta and the red alga Porphyridium cruentum were able to enhance both the H2O2 and the tert-butyl hydroperoxide dependent oxidation of glutathione. The glutathione peroxidation activity of D. primolecta was reduced only slightly by heating the 400 g supernatant, a 30% decrease in the rate with H2O2 and 10% decrease in the rate with t-BuOOH being observed. Heating caused the H2O2 dependent activity in P. cruentum to be reduced by only 30%, but the activity with t-BuOOH was reduced by 90%. Freezing decreased the t-BuOOH dependent activity of P. cruentum by 90%, but did not lower the t-BuOOH dependent activity of D. primolecta or the H2O2 dependent activity of either alga. It was concluded that the heat and cold stable, glutathione peroxidation was non-enzymatic in nature. A variety of small molecules (ascorbate, Cu(NO3)2, selenocystine, dimethyldiselenide and selenomethionine) were shown to be able to enhance the hydroperoxide dependent oxidation of glutathione in the assay system employed in this study. Such compounds could be responsible for the activity observed in algae. The heat and cold labile t-BuOOH reductase activity of P. cruentumwas possibly enzymatic, but was not attributable to the presence of glutathione-S-transferase. Both algae, when cultured in the presence of added selenite, displayed an approximate doubling of the non-enzymatic H2O2 and t-BuOOH dependent glutathione oxidase activities. The heat and cold labile t-BuOOH reductase activity of P. cruentum was unaltered when the alga was grown in the presence of added selenite. These observations are consistent with the hypothesis that selenium compounds present in the algae are responsible for the selenium induced glutathione peroxidation.  相似文献   

11.
In silico analysis showed that the differentially expressed type 3 oil palm metallothionein-like genes MT3-A and MT3-B share at least 11 common putative promoter regulatory elements. The identified motifs include W-boxes, TATCCA element, binding element for cytokinin response regulators and pollen-specific elements. A high degree of conservation was observed in their genomic organisation where the coding regions are divided at two identical positions in both genes by two AT-rich introns. Promoter activity of the MT3-B gene was analysed using a transient assay by bombarding oil palm tissue slices with a β-glucuronidase (GUS) gene construct and a stable reporter assay by analysing GUS expression in transformed Arabidopsis thaliana plants. Transient expression analysis revealed MT3-B promoter activity in oil palm root tissues but not in fruit mesocarp at 12 weeks after anthesis and spear leaves. The T3 homozygous transgenic Arabidopsis plants, harbouring the MT3-B promoter/GUS construct, showed reporter activity in cotyledons and mature leaves with lower expression levels in root tissues. The expression levels in the roots of the T3 homozygous transgenic plants increased five- and 2.5-folds when treated with 80 μM of Zn2+ and Fe2+, respectively. Altogether, these results indicate that the MT3-A and MT3-B promoter activities may be regulated by a variety of abiotic factors and MT3-B promoter may potentially be manipulated for use in plant genetic engineering for induced synthesis of gene product.  相似文献   

12.
A major fraction of the essential trace element selenium circulating in human blood plasma is present as selenoprotein P (SeP). As SeP associates with endothelial membranes, the participation of SeP in selenium-mediated protection against oxidative damage was investigated, using the human endothelial cell line Ea.hy926 as a model system. Hepatocyte-derived SeP prevented tert-butylhydroperoxide (t-BHP)-induced oxidative cell death of Ea.hy926 cells in a similar manner as did sodium selenite, counteracting a t-BHP-induced loss of cellular membrane integrity. Protection was detected after at least 10 h of SeP supplementation and it peaked at 24 h. SeP time-dependently stimulated the expression of cytosolic glutathione peroxidase (cGPx) and increased the enzymatic activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR). The cGPx inhibitor mercaptosuccinate as well as the γ-glutamylcysteine synthetase inhibitor buthionine sulfoximine counteracted the SeP-mediated protection, while the TR inhibitors cisplatin and auranofin had no effect. The presented data suggest that selenium supplementation by SeP prevents oxidative damage of human endothelial cells by restoring expression and enzymatic activity of GPx.  相似文献   

13.
Since S-n-butyl S′-p-tert-butylbenzyl N-3-pyridyldithiocarbonimidate, a potent fungicide to powdery mildew, is known to inhibit ergosterol biosynthesis in Monilinia fructigena, the activities were assessed on 24 compounds having other substituents than the 3-pyridyl and on 24 compounds having a variety of different structures connecting the 3-pyridyl and the p-tert-butylphenyl group from that of the dithiocarbonimidate.

In the former group the 3-pyridyl group was essential for the activities and the substitution at the 2- or 6-position resulted, on available data, in inactive compounds. Several other β-N-heterocyclic analogs were also active. In the latter group, a number of modified compounds from the dithiocarbonimidate structure were shown to be active.  相似文献   

14.
Alosi MC  Melroy DL  Park RB 《Plant physiology》1988,86(4):1089-1094
The average glutathione equivalent concentration in phloem exudate collected from squash fruit (Cucurbita moschata [Duchesne] Poir. var Butternut) and pumpkin fruit (Cucurbita pepo [L.] var Jack-o-lattern) was 1.02 and 0.60 millimolar, respectively. Glutathione reductase (EC 1.6.4.2) activity in phloem exudate from squash and pumpkin fruit averaged 0.48 and 1.74 micromole NADPH oxidized per minute per milliliter, respectively. Protein concentrations in fruit phloem exudates averaged 67 milligrams per milliliter for squash and 57 milligrams per milliliter for pumpkin. The phloem-specific P-proteins account for most of the protein content of exudate. Pure exudate from fruit does not gel for hours or days, but when diluted with neutral or alkaline aqueous solutions, exudate gels rapidly. Exudate solutions undergo biphasic pH changes with dilution. We suggest that P-protein undergoes conformational change upon dilution, exposing titratable groups and sulfhydryl residues. Oxidation of the latter forms the intermolecular disulfide bridges of the gel. The gelation of diluted exudate is regulated by factors (oxygen, pH, glutathione, NADPH) which affect the maintenance of reduced sulfhydryl residues and the activity of glutathione reductase. While these factors may also act in vivo to regulate redox conditions in phloem, their relationship to hypothetical sol/gel transitions or motile and nonmotile phases in the transport conduit is unknown.  相似文献   

15.
Alkyl-substituted derivatives of 2-aminonaphthalene (2-AN) 1, 2-aminofluorene (2-AF) 6 and 4-aminobiphenyl (4-ABP) 11 were synthesized and the mutagenic activity of these compounds determined in Salmonella typhimurium strains TA98 and TA100 with and without S9 mix. In the case of the ortho-substituted 4-aminobiphenyls 1215 (3-alkyl=ethyl, iso-propyl, n-butyl, tert-butyl) the substituent with the strongest steric demand (3-tert-butyl) shows the strongest influence on the decrease of mutagenicity if compared with the parent compound. In the series of the bis-ortho-disubstituted compounds 1618 (3,5-dimethyl-, 3,5-diethyl- and 3,5-diisopropyl-4-aminobiphenyl) generation of non-mutagenic species occurs already with the introduction of two ethyl groups. For the 4-aminobiphenyl derivatives 1215 and 1618, as well as for the 1-alkylated 2-aminofluorenes 710 and the 1-alkylated 2-aminonaphthalenes 25 a smaller mutagenicity was observed if compared with predicted mutagenicities as calculated by the QSAR equations of Debnath et al. (Environ. Mol. Mutagen. 19 (1992) 37). The largest differences resulted in the cases of the tert-butyl substituted compounds. Only with smaller alkyl groups like ethyl the QSAR predictions and the experimentally determined mutagenicities come close to each other. Thus, these results show that appropriate alkyl substitution reduces (eliminates) mutagenicity, secondly, it is necessary to introduce steric parameters to predict the mutagenicity of such compounds correctly.  相似文献   

16.
The goal of this work was the identification and quantification of phytoprostanes (PhytoPs) in three types of nuts: “Walnut”, “Macadamia”, and “Pecan”. This study represents a first approach to the relationship between the quantitative and qualitative PhytoP profiles in the “Macadamia” and “Pecan” nuts subjected to fried salt or fried honey processing. The kernels were found to contain 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, 16-B1-PhytoP, ent-16-B1-PhytoP, 9-L1-PhytoP, and ent-9-L1-PhytoP. “Macadamia” fried salt nuts were the only ones that produced 9-epi-9-D1-PhytoP and 9-D1-PhytoP. The total PhytoP concentration in raw nuts was in the range of 5541–7830?ng kg?1 fresh weight (FW); for most of the PhytoPs, the concentrations were lowest in raw walnuts, indicating that concentration of each PhytoP was influenced by the genotype. The frying process increased the total PhytoPs concentration to the range of 8903–33,727?ng kg?1 FW. Therefore, this is the first work describing PhytoPs in nuts and reinforces the capacity of these compounds to act as biomarkers to monitor the processing treatments that influence the final quality of nuts.  相似文献   

17.
Fruit juices are an important part of the modern diet in many countries. However, few data are available concerning the microbiological quality of the fruit juices sold in Greece. Using standard microbiological procedures, we conducted a bacteriological survey of commercially sold, pasteurized, shelf-stable fruit juices from retail markets. A total of 120 samples of fruit juices sold in various retail markets were examined for their bacteriological quality. The pH of the tested juices was 2.4–4.8. Bacteria were isolated from 51 samples (42.5%) and fungi from 78 samples (65%). Escherichia coli O157:H7 was detected in four of the analyzed samples (3.34%), and Staphylococcus aureus was detected in four different samples (3.34%). In 11 samples (9.1%), the total number of microorganisms detected was as high as 125 colony-forming units (CFU). Acidophilic microorganisms were isolated from 26 samples (21.7%) and Blastomyces was detected in 46 samples (38.3%). All samples were negative for Lactobacillus, Clostridium perfrigens, Salmonella spp., Bacillus cereus, total coliforms, E. coli, and Listeria monocytogenes.Many of the microorganisms detected may cause disease in humans; thus, a number of the tested samples did not meet the Greek guidelines for the microbiological quality of juices. Use of a Hazard Analysis Critical Control Point (HACCP) system should be generally introduced into the juice industry sector to improve the quality of fruit juices, as well as other manufactured foods.  相似文献   

18.
    
Summary Oxytocin, a nonapeptide amide, was synthesized on a PEGA-resin using the Fmoc-tBu strategy. The sulfhydryl groups of the two cysteine residues were protected with trityl groups. Different oxidation reagents such as DMSO, I2 and thallium (III) trifluoroacetate mixed with TFA were evaluated in order to obtain oxytocin in a one-pot reaction. The mixture of TFA and DMSO (5:1) in which oxytocin was formed quantitatively was found to be the optimal method. The cyclic oxytocin could be isolated in 56% yield.Abbreviations Acm acetamidomethyl - DCM dichloromethane - Dhbt 3,4-dihydro-4-oxobenzotriazin-3-yl - DMF dimethylformamide - DMSO dimethylsulfoxide - Fmoc 9-fluorenylmethyloxycarbonyl - MALDI matrix-assisted laser desorption ionisation - NEM 4-ethylmorpholine - PEGA polyethylene glycol-poly-N,N-dimethylacrylamide co-polymer - Pfp pentafluorophenyl - TBTU O-(1H-benzotriazol-1-yl)-N,N,N,N-tetramethyluronium tetrafluoroborate - tBu tert-butyl - TFA trifluoroacetic acid - TIS triisopropylsilane - Tl(tfa)3 thallium(III) trifluoroacetate; Trt, triphenylmethyl  相似文献   

19.
Exposure of the skin to certain phenols or catechols such as 4‐tert‐butylphenol (TBP) and 4‐tert‐butylcatechol (TBC) may cause leukoderma. These substances are used in the polymer industry and numerous cases have been reported. Several theories of the mechanism for chemical leukoderma have been suggested. In the present study, TBP and TBC are shown to be oxidised by tyrosinase. The oxidation of TBC yields a quinone that is further investigated on its reactions with cysteine or glutathione (GSH). The products formed are isolated and identified by mass spectrometry and nuclear magnetic resonance as being 4‐tert‐butyl‐6‐S‐cysteinylcatechol (cys‐TBC) and 4‐tert‐butyl‐6‐S‐glutathionylcatechol (GS‐TBC). The reactive quinone is a strongly electrophilic substance that rapidly reacts with GSH. A depletion of the GSH defence system may give conditions where the quinone lives long enough to effect its toxic properties. The influence of the reactive tert‐butylquinone on enzymatic activities is demonstrated by the inhibition of glyceraldehyde‐3‐phosphate dehydrogenase.  相似文献   

20.
When isolated hepatocytes were exposed to tert-butyl hydroperoxide (tBOOH) they lost their cellular membrane integrity. Decreased levels of GSH, increased phosphorylase a activity (an indirect index of the amount of free cytosolic Ca2+), and increase in the formation of malondialdehyde (MDA)-like products (an index of lipid peroxidation) preceeded the release into the culture medium of the cytosolic enzyme lactate dehydrogenase (LDH), indicating that this later process was the consequence of the former intracellular events. While ATP levels were not modified during the incubation of cells with increasing concentrations of tBOOH, protein synthesis was decreased in a concentration-dependent manner. The glycogen content decreased at the same time as the increase in LDH leakage. The addition of promethazine (PMZ) an antioxidant molecule, prevented the lipid peroxidation, but did not protect cells against the oxidative effects of tBOOH, including loss of membrane integrity. Nevertheless, the addition of GSH to cell suspensions incubated with tBOOH, decreased the formation of MDA-like products, restored the protein synthesis rate, prevented partially the activation of phosphorylase a and preserved cell viability. On the basis of these results, we postulate that both GSH depletion and modification in phosphorylase a activity (Ca2+ levels) were the most relevant intracellular events to explain the cytotoxicity of tBOOH.Abbreviations tBOOH tert-butyl hydroperoxides - GSH reduced glutathione - LDH lactate dehydrogenase - MDA malondialdehyde - TBA thiobarbituric acid - PMZ promethazin - BSA bovine serum albumin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号