首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Brevibacterium lactofermentum, a Gram-positive bacterium, is a commercially important amino acid producer. In this organism, the tryptophan biosynthetic enzymes are encoded within a 7725 bp HapII-BamHI fragment. Seven open reading frames were identified as trp genes by complementation tests with various B. lactofermentum and Escherichia coli tryptophan auxotrophs. Following the nomenclature established for E. coli and Serratia marcescens, the B. lactofermentum trp genes were designated trpL, trpE, trpG, trpD, trpC (including the trpF domain), trpB, and trpA. The organization of these genes is identical to that in S. marcescens. The nucleotide sequences of the putative ribosome-binding sites for the B. lactofermentum trp genes resemble those of E. coli and Bacillus subtilis. Computer analysis revealed that the trp enzymes of B. lactofermentum resemble the enzymes of the Gram-negative E. coli more closely than those of the Gram-positive B. subtilis.Abbreviations bp base pairs - kb kilobases  相似文献   

2.
3.
Better producers of l-lysine were obtained by derivation of fluoropyruvate(FP)-sensitive mutants from Brevibacterium lactofermentum AJ3990. The coexistence of FP and excess biotin synergistically stimulated l-lysine formation by washed cells. FP inhibited 50% of growth and pyruvate dehydrogenase (PDH) activity of AJ3990 at 0.04 mm and 1 mm, respectively. Therefore, the synergistic effect of FP and excess biotin seems to be due to the optimization of the PDH/pyruvate carboxylase activity ratio in l-lysine biosynthesis. This was confirmed by the derivation of FP-sensitive mutants which have the optimal level of PDH activity for l-lysine production. The best producer, AJ11204, had about 27% PDH activity as compared with the parental strain and accumulated 70 g of l-lysine per liter with a conversion yield of 50% from glucose in the presence of excess biotin.  相似文献   

4.
The Escherichia coli-Brevibacterium lactofermentum shuttle vector pBLA was introduced into intact cells of B. lactofermentum by electrotransformation. Several parameters of this procedure such as voltage and cell concentration were analysed. Optimal conditions gave an efficiency of 10(6) transformants per microgram of DNA. Two recalcitrant strains could be electrotransformed when an ampicillin pretreatment step was used. Electrotransformation experiments using DNAase or different structural forms of plasmid DNA showed that the electrotransformation process is quite different from natural transformation involving competence development. Restriction-modification-proficient B. lactofermentum could be efficiently electrotransformed with pBLA DNA isolated from E. coli. This restriction-modification system therefore seems to be overcome by electrotransformation. Thus electrotransformation may efficiently replace the protoplast bacterial transformation method.  相似文献   

5.
The exoglucanase gene (cex) and the endoglucanase A gene (cenA) from Cellulomonas fimi were subcloned into the Escherichia coli/Brevibacterium lactofermentum shuttle vector pBK10. Both genes were expressed to five to ten times higher levels in B. lactofermentum than in E. coli, probably because these genes were expressed from C. fimi promoters. In B. lactofermentum virtually all of the enzyme activities were in the culture supernatant. This system will facilitate analysis of the expression of the C. fimi genes in and secretion of their products from a Gram-positive bacterium.  相似文献   

6.
7.
A potent l-leucine producer was screened among mutants of glutamic acid producing bacteria. This strain, No. 218, is one of 2-thiazolealanine resistant mutants derived from a methionine isoleucine double auxotroph of Brevibacterium lactofermentum 2256 by nitroso-guanidine.

Strain No. 218 produced 19 mg/ml of l-leucine after 72 hr cultivation when 8 % glucose and 4 % ammonium sulfate were supplied as a carbon and a nitrogen source, respectively, thus giving the yield of 23.1 % from glucose.

The addition of Fe2+ and Mn2+ in combination gave much more productivity than that of Fe2+ or Mn2+ alone.

Effects of amino acids, nucleic acids, vitamins, and the other nutrients on l-leucine production were investigated.

The fermentation product was isolated and purified from the culture, and identified as l-leucine.  相似文献   

8.
An efficient polyethylene glycol-assisted method for transformation of Brevibacterium lactofermentum protoplasts that uses plasmid vectors has been developed. Two small plasmids, pUL330 (5.2 kilobases) and pUL340 (5.8 kilobases), both containing the kanamycin resistance gene from transposon Tn5 and the replication origin of the natural plasmid pBL1 of B. lactofermentum, were selected as vectors. Supercoiled forms of the plasmids yielded a 100-fold higher transformation frequency than did linear forms. The optimal transformation frequency was achieved with 10 ng of DNA in 1 ml of transformation buffer. Higher concentrations of plasmid DNA resulted in a decrease in transformation frequency per microgram of DNA. Optimal transformation was obtained with 25 to 35% polyethylene glycol 6000. Under optimal conditions, 10(6) transformants per microgram of DNA were obtained.  相似文献   

9.
10.
A gene bank from the amino acid producer Brevibacterium lactofermentum has been prepared in Escherichia coli using pBR322 as vector. Four clones containing genetic information needed to complement mutations in A,B,C and D genes from E. coli have been isolated. The cloned fragments range between 4.3 kb (pULT61) and 7.9 kb (pULT62). All the four clones contain genetic information that complements trpB gene from E. coli. The cloned trpB gene is very stable and is maintained extrachromosomally in E. coli. It is expressed very efficiently showing high levels of tryptophan synthetase activity.  相似文献   

11.
A method for the introduction of a bacteriophage DNA into Brevibacterium lactofermentum protoplasts is described. Frequencies of 10(5) infective centres per micrograms DNA were easily achieved, the relationship between the number of infective centres and the amount of DNA being linear up to 5 micrograms DNA per assay. This method can be used to introduce foreign DNA into these bacteria.  相似文献   

12.
13.
Abstract The nucleotide sequence of a gene coding for a 37 kDa subunit of a cytosolic malate dehydrogenase of Trichomonas vaginalis was established. The sequences of a gDNA clone and a cDNA clone, which lacked seven amino-terminal codons, were identical, indicating an absence of introns from the gene. Cell fractionation combined with sequencing of peptide fragments of the purified enzyme showed that the gene codes for an expressed cytosolic enzyme. The derived amino acid sequence was closely related to cytosolic malate dehydrogenases from animals and plants and from the eubacteria Thermus aquaticus and Mycobacterium leprae and was more distant from the enzyme of mitochondria and from Escherichia coli and certain other eubacteria. In phylogenetic reconstructions this enzyme shared a most recent common ancestor with other cytosolic enzymes.  相似文献   

14.
The murI gene encoding D-glutamate racemase plays an important role in the biosynthesis of D-glutamic acid, an essential component of cell wall peptidoglycan of almost all eubacteria. A DNA fragment that could rescue the auxotrophy of D-glutamic acid in the Escherichia coli murI mutant strain WM335 was isolated from Brevibacterium lactofermentum ATCC 13869 belonging to the coryneform bacteria. DNA sequencing reveals that it encodes a protein of 284 amino acid residues, which shows a high level of homology with D-glutamate racemases from several other bacteria.  相似文献   

15.
16.
Summary Osmoregulation of Brevibacterium lactofermentum was examined. Exogenous glycine betaine was found to stimulate the growth rate of the bacterium in media of inhibitory osmotic strength. The stimulation was independent of any specific solute, electrolyte, or non-electrolyte. The bacterium did not utilize glycine betaine as a sole carbon source or nitrogen source, or degrade it even in complete medium. The changes in intracellular proline and glycine betaine concentrations were measured in media of different osmolarity. Brevibacterium lactofermentum grown in media without glycine betaine did not accumulate it, but synthesized several hyndred millimoles of proline inside the cells. On the other hand, when glycine betaine was added to the growth media, it accumulated in the cell instead of proline. These data indicate that glycine betaine is an osmoprotective compound for B. lactofermentum. Offprint requests to: Yoshio Kawahara  相似文献   

17.
18.
19.
Four rpoD hybridizing signals have been identified in the chromosome of Brevibacterium lactofermentum. Two rpoD-like genes, sigA and sigB, have been cloned and sequenced, and they encode principal sigma factors of the RNA polymerase. The deduced amino acid sequences of SigA and SigB showed very high similarities to those of Mycobacterium smegmatis MysA and MysB proteins, respectively, and also to those of HrdB proteins from different Streptomyces species. SigA and SigB maintain the conserved motifs of sigma 70-like principal sigma factors. sigB is closely linked to the dtxR gene (encoding a repressor of iron-regulated promoters homologous to the diphtheria toxin repressor from Corynebacterium diphtheriae.  相似文献   

20.
The ftsZ gene was cloned from the chromosomal DNA of Brevibacterium lactofermentum by the polymerase chain reaction (PCR) using two oligonucleotides designed from two conserved regions found in most of the previously cloned and sequenced ftsZ genes from other microorganisms. ftsZ is a single-copy gene in corynebacteria and is located downstream from ftsQ and murC, indicating linkage between genes involved in peptidoglycan synthesis (mur genes) and genes involved in cell division (fts genes). The organisation of the cluster is similar to that in Streptomyces and different from those of Escherichia coli or Bacillus subtilis because ftsA is not located upstream of ftsZ. The gene was expressed in E. coli using the T7 expression system; the calculated molecular weight of the expressed protein was 50?kDa. Expression of the B. lactofermentum ftsZ gene in E. coli inhibited cell division and led to filamentation. The ftsZ gene of this organism does not complement ftsZ mutations or deletions in E. coli, when cloned on low or high-copy-number vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号