首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1. The distribution of DPN and DPNH pyrophosphatases and DPNase in centrifugally prepared fractions of organs of several species of animals is reported. 2. A DPNH pyrophosphatase was found in the soluble fraction of pigeon and of rabbit liver. This enzyme did not split DPN but accounted for over 50 per cent of the DPNH pyrophosphatase activity of the whole homogenates. 3. All the organs tested, including the pigeon liver and rabbit liver, contained a microsomal pyrophosphatase that attacked both DPNH and DPN. This microsomal enzyme split DPNH faster than DPN in all cases. 4. DPN pyrophosphatase and DPNase activity were generally concentrated in the microsomal fraction of liver, of kidney, and of brain. 5. The DPNase of hamster liver was virtually inactive at pH 7.5 but was optimally active at pH 5.5. Considerable difference was found with respect to pH on the activity of DPNase from organs of different animals. 6. The inhibition of mitochondrial and microsomal DPNH oxidation by nicotinamide was noted during the course of these experiments. 7. The significance of some of the distribution patterns is discussed.  相似文献   

2.
The effects of divalent cations, especially Ca2+ and Mg2+, on the proton-translocating inorganic pyrophosphatase purified from mung bean vacuoles were investigated to compare the enzyme with other pyrophosphatases. The pyrophosphatase was irreversibly inactivated by incubation in the absence of Mg2+. The removal of Mg2+ from the enzyme increased susceptibility to proteolysis by trypsin. Vacuolar pyrophosphatase required free Mg2+ as an essential cofactor (K0.5 = 42 microM). Binding of Mg2+ stabilizes and activates the enzyme. The formation of MgPPi is also an important role of magnesium ion. Apparent Km of the enzyme for MgPPi was about 130 microM. CaCl2 decreased the enzyme activity to less than 60% at 40 microM, and the inhibition was reversed by EGTA. Pyrophosphatase activity was measured under different conditions of Mg2+ and Ca2+ concentrations at pH 7.2. The rate of inhibition depended on the concentration of CaPPi, and the approximate Ki for CaPPi was 17 microM. A high concentration of free Ca2+ did not inhibit the enzyme at a low concentration of CaPPi. It appears that for Ca2+, at least, the inhibitory form is the Ca2(+)-PPi complex. Cd2+, Co2+ and Cu2+ also inhibited the enzyme. The antibody against the vacuolar pyrophosphatase did not react with rat liver mitochondrial or yeast cytosolic pyrophosphatases. Also, the antibody to the yeast enzyme did not react with the vacuolar enzyme. Thus, the catalytic properties of the vacuolar pyrophosphatase, such as Mg2+ requirement and sensitivity to Ca2+, are common to the other pyrophosphatases, but the vacuolar enzyme differs from them in subunit mass and immunoreactivity.  相似文献   

3.
CDPdiacylglycerol pyrophosphatase (E.C. 3.6.1.26) activity has been examined in rat lung mitochondrial and microsomal fractions. While the mitochondrial hydrolase exhibited a broad pH optimum from pH 6-8, the microsomal activity decreased rapidly above pH 6.5. Apparent Km values of 36.2 and 23.6 microM and Vmax values of 311 and 197 pmol.min-1.mg protein-1 were observed for the mitochondrial and microsomal preparations, respectively. Addition of parachloromercuriphenylsulphonic acid led to a marked inhibition of the microsomal fraction but slightly stimulated the mitochondrial activity at low concentrations. Mercuric ions were inhibitory with both fractions. Although biosynthetic reactions utilizing CDPdiacylglycerol require divalent cations, addition of Mg2+, Mn2+, Ca2+, Zn2+, Co2+, and Cu2+ all inhibited the catabolic CDPdiacylglycerol hydrolase activity in both fractions. EDTA and EGTA also produced an inhibitory effect, especially with the mitochondrial fraction. Although addition of either adenine or cytidine nucleotides led to a decrease in activity with both fractions, the marked susceptibility to AMP previously reported for this enzyme in Escherichia coli membranes, guinea pig brain lysosomes, and pig liver mitochondria was not observed. These results indicate that rat lung mitochondria and microsomes contain specific CDPdiacylglycerol hydrolase activities, which could influence the rate of formation of phosphatidylinositol and phosphatidylglycerol for pulmonary surfactant.  相似文献   

4.
Initial rates of PPi hydrolysis by cytosolic and mitochondrial inorganic pyrophosphatases of rat liver have been measured in the presence of 0.2-100 microM MgPPi and 0.01-50 mM Mg2+ at pH 7.2 to 9.3. The apparently simplest model consistent with the data for both enzymes implies that they bind substrate, in the form of MgPPi, and three Mg2+ ions, of which two are absolutely required for activity. The third metal ion facilitates substrate binding but decreases maximal velocity for the cytosolic enzyme, while substrate binding is only modulated for the mitochondrial enzyme. The model is also applicable to bovine heart mitochondrial pyrophosphatases. The active form of the substrate for the cytosolic pyrophosphatase is MgP2O7(-2); the catalytic and metal-binding steps require a protonated group with pKa = 9.2 and an unprotonated group with pKa = 8.8, respectively. The results indicate that the mitochondrial pyrophosphatase is more sensitive to variations of Mg2+ concentration in rat liver cells than is the cytosolic one.  相似文献   

5.
Plasma membrane enriched fractions of Dictyostelium discoideum contain a Des-insensitive ATPase activity that can be fractionated by DEAE-Sephacel into a major vanadate-sensitive activity and a minor vanadate-insensitive activity. The vanadate-insensitive activity hydrolyzed pyrophosphate considerably more rapidly than ATP or any other substrate tested, and the enzyme was therefore designated a pyrophosphatase. The enzyme had no activity on AMP or p-nitrophenyl phosphate. The pyrophosphatase activity was maximal at alkaline pH values and stimulated by Mg2+ but not by Ca2+, properties of the enzyme that are very similar to those of the previously characterized pyrophosphatases of the plant tonoplast membrane. The pyrophosphatase activity of total membrane extracts changed very little during Dictyostelium differentiation.  相似文献   

6.
Bovine liver mitochondrial aldehyde dehydrogenase (aldehyde: NAD+ oxidoreductase, EC 1.2.1.3) has been purified to homogeneity by conventional purification procedures. The enzyme was found to have a molecular weight of 215,000 based on gel filtration. The protein is composed of polypeptides having the same molecular weight, 54,000 and thus it appears to consist of four subunits of equal size. The enzyme exhibited a broad aldehyde specificity, oxidizing irreversibly a wide variety of aliphatic and aromatic aldehydes to corresponding carboxylic acids. Km values for straight-chain saturated aldehydes were below 0.1 µm, and relatively constant independent of the carbon chain lengths of the aldehydes. The maximum velocities for saturated aldehydes also did not vary appreciably with their carbon chain lengths. Maximum activity was observed at pH 9.3 and 50°C. The enzyme activity was affected by some divalent cations. Ca2+ enhanced the activity, while Mg2+ inhibited it. The enzyme was quite stable at neutral pH, but was unstable above pH 9 or below pH 6. Bovine liver has three isozymes of aldehyde dehydrogenase which are located in the mitochondrial, cytosolic, and microsomal fractions. Comparison of enzymic properties among these isozymes and yeast enzyme indicates that the mitochondrial enzyme is very suitable for improving the objectionable flavor due to aldehydes in foods.  相似文献   

7.
Entamoeba histolytica contains two acid pyrophosphatases. One is an inorganic pyrophosphatase with a relatively high Km ( ? 1 mM) and no cation requirement. The other is a nucleoside diphosphatase with a relatively low Km ( ? 50 μM) and Ca2+ requirement. No Mg2+ dependent neutral or alkaline inorganic pyrophosphatase is present. The pyrophosphatases are localized in subcellular particles, display structure-linked latency and are tightly bound to membranes.  相似文献   

8.
ATP-dependent Ca2+ uptake distinct from that of the mitochondria is found in both plasma membrane and microsomal membranes of rat kidney. Activity attributed to these fractions is enhanced by ammonium oxalate and is apparently insensitive to NaN3. In contrast, rat kidney mitochondrial Ca2+ uptake is blocked by NaN3. The pH of optimal activity is significantly higher for the mitochondrial fraction. Microsomal membrane Ca2+ uptake differs from that of the plasma membrane. Microsomal membranes are four times as active as the plasma membrane at high (5 mM) ATP levels. Apparent Km values for Mg2+-ATP differ in the two preparations with a higher affinity for Mg2+-ATP found in the plasma membrane Ca2+ uptake activity of the plasma membrane preparation is readily inhibited by Na+. Sucrose gradient density fractionation indicates that the observed microsomal membrane Ca2+ pump activity is associated with membrane vesicles derived from the endoplasmic reticulum. Ca2+ pump activity of both plasma membrane and microsomal fraction is depressed din the adrenalectomized rat. This activity is not restored by a single natriuretic dose of aldosterone.  相似文献   

9.
A scheme of interactions of Mg2+ ions and their 1:1 complex with PPi (PPiMg') with two forms of inorganic pyrophosphatase isolated from beef heart mitochondria has been deduced from the analysis of enzyme kinetics at pH varying from 5.6 to 8.5. The scheme implies the existence of two catalytically important metal-binding sites on the enzyme. The two enzyme forms differ in maximal velocity and affinity for the metal activator. The pH dependence of kinetic parameters suggests that the active form of the substrate is MgP2O2-7. Ca2+ ions strongly inhibit pyrophosphatase activity and the corresponding Hill coefficient is 1.5. Phosphate and ATP are weak inhibitors of pyrophosphatase of the competitive and noncompetitive type respectively. The results show that these forms of mitochondrial pyrophosphatase are similar to pyrophosphatases isolated from other sources.  相似文献   

10.
Calcium-activated proteolytic activity in rat liver mitochondria   总被引:1,自引:0,他引:1  
Soluble extracts from sonicated rat liver mitochondria and rat liver cytosol were each chromatographed on DEAE-cellulose columns, and the fractions assayed for Ca2+-activated proteolytic activity using 14C-casein as a substrate. The mitochondrial preparations were shown to be free of cytosolic and microsomal contamination by the lack of alcohol dehydrogenase activity, a cytosolic marker enzyme, and by a lack of cytochrome P-450 activity, a microsomal marker enzyme. Two peaks of Ca2+-activated neutral endoprotease activity were resolved from the mitochondrial fractions. One protease was half-maximally activated with 25 μM Ca2+, and the other by 750 μM Ca2+. Rat liver cytosol contained only a high Ca2+-requiring protease peak. This is the first demonstration of Ca2+-activated proteases in mitochondria.  相似文献   

11.
We could show an ATPase in mitochondrial and microsomal fractions of sheep arteria carotis communis and arteria coronaria of cattle which can be stimulated by Ca2+ of Mg2+, respectively. The enzyme has a higher affinity for Ca2+ than for Mg2+. The maximum activity of the Mg(Ca)-ATPase was found at 2-4 mM Ca2+ or Mg2+, respectively. Higher concentrations of these ions inhibit the enzyme. Mn2+, Sr2+ and Co2+ can substitute Ca2+ in splitting of ATP by the ATPase of both fractions of ateria coronaria of cattle. The ions K+ and Na+, variation of temperature and pH and a variety of pharmacological active compounds has the same effect on the ATPase stimulated by Ca2+ or Mg2+. These findings prove that Ca2+ and Mg2+ act at the same site of the ATPase of the mitochondrial and microsomal fraction of vascular smooth muscle.  相似文献   

12.
Microsomal fractions from wheat tissues exhibit a higher level of ATP hydrolytic activity in the presence of Ca2+ than Mg2+. Here we characterise the Ca2+-dependent activity from roots of Triticum aestivum lev. Troy) and investigate its possible function. Ca2+-dependent ATP hydrolysis in the microsomal fraction occurs over a wide pH range with two slight optima at pH 5.5 and 7.5. At these pHs the activity co-migrates with the major peak of nitrate-inhibited Mg2+. Cl-ATPase on continuous sucrose gradients indicating that it is associated with the vacuolar membrane. Ca2+-dependent ATP hydrolysis can be distinguished from an inhibitory effect of Ca2+ on the plasma membrane K+, Mg2+-ATPase following microsomal membrane separation using aqueous polymer two phase partitioning. The Ca2+-dependent activity is stimulated by free Ca2+ with a Km of 8.1 μM in the absence of Mg2+ ([CaATP] = 0.8 mM). Vacuoiar membrane vacuolar preparations contain a higher Ca2+-dependent than Mg2+-dependent ATP hydrolysis, although the two activities are not directly additive. The nucleotide specificity of the divalent ion-dependent activities in vacuolar membrane-enriched fractions was low. hydrolysis of CTP and UTP being greater than ATP hydrolysis with both Ca2+ and Mg2+ The Ca2+-dependent activity did discriminate against dinucleotides, and mononucleotides. and failed to hydrolyse phosphatase substrates. Despite low nucleotide specificity the Mg2+-dependent activity functioned as a bafilomycin sensitive H+-pump in vacuolar membrane vesicles. Ca2+-dependent ATP hydrolysis was not inhibited by the V-, P-, or F-type ATPase inhibitors bafilomycin. vanadate and azide, respectively. nor by the phosphatase inhibitor molybdate, but was inhibited 20% at pH 7.5 by K+. Possible functions of Ca2+-dependent hydrolysis as a H+-pump or a Ca2+-pump was investigated using vacuolar membrane vesicles. No H+ or Ca2+ translocating activity was observed under conditions when the Ca2+-dependent ATP hydrolysis was active.  相似文献   

13.
The subcellular distribution of acid (pH 4.0) and neutral (pH 6.5) α-glucosidases was investigated in biopsy specimens of human skeletal muscle obtained from six normal subjects, four adult cases of acid maltase deficiency, and a case of myophosphorylase deficiency. The highest relative specific activity of acid glucosidase, as well as of other acid hydrolases, was observed in the light mitochondrial fraction. Relatively high acid phosphatase activity was also found in the microsomal fraction. In all muscles the highest relative specific activity of neutral glucosidase was in the microsomal fraction. In acid glucosidase deficient muscle no neutral glucosidase could be detected in the light and heavy mitochondrial fractions but in normal and myophosphorylase deficient muscle neutral glucosidase activity was also detectable in these fractions. The final supernatant of all muscles contained neutral glucoamylase activity. The relevance of these data to the pathogenesis of the different forms of type II glycogenosis is considered.  相似文献   

14.
1. Studies on the distribution of alkaline inorganic pyrophosphatase (pyrophosphate phosphohydrolase, EC 3.6.1.1) in the subcellular fractions of maize leaves showed that the enzyme is present in cytoplasm, chloroplasts and mitochondria. The activity observed in nuclei and microsomes may result from contamination with the mitochondrial fraction. 2. Alkaline pyrophosphatases from three subcellular fractions were purified by fractionation with (NH4)2SO4, followed by ion-exchange and gel-filtration chromatography, and by isoelectric focusing. Highly purified enzyme preparations, with specific activities ranging from 55 to 188 micronmoles/min/mg protein, were obtained. 3. All the enzymes exhibited the maximum activity at pH 8.5 and the Mg2+/PPi ratio of 5. They differed in electrophoretic mobility, pI, and susceptibility to urea and thermal denaturation. This indicates that they represent isoenzymes compartmentized in particular subcellular fractions.  相似文献   

15.
Golgi-rich fractions were prepared from homogenates of adult rat pancreas by discontinuous gradient centrifugation. These fractions were characterized by stacks of cisternae associated with large, irregular vesicles and were relatively free of rough microsomes, mitochondria, and zymogen granules. The Golgi-rich fractions contained 50% of the UDP-galactose: glycoprotein galactosyltransferase activity; the specific activity was 12-fold greater than the homogenate. Such fractions represented < 19% of thiamine pyrophosphatase, uridine diphosphatase, adenosine diphosphatase, and Mg2+-adenosine triphosphatase. Zymogen granules and the Golgi-rich fractions were extracted with 0.2 m NaHCO3, pH 8.2, and the membranes were isolated by centrifugation. The glycoprotein galactosyltransferase could not be detected in granule membranes, while the specific activity in Golgi membranes was 25-fold greater than the homogenate.At least 35 polypeptide species were detected in Golgi membranes by polyacrylamide gel electrophoresis in 1% sodium dodecylsulfate. These ranged in molecular weight from 12,000 to <160,000. There were only minor differences between Golgi membranes and smooth microsomal membrane. In contrast, zymogen granule membranes contained fewer polypeptides. A major polypeptide, which represented 30–40% of the granule membrane profile, accounted for less than 3% of the polypeptides of Golgi membranes or smooth microsomal membranes.  相似文献   

16.
A study has been made to determine whether renal plasma membranes contain an HCO3? stimulated, ouabain insensitive Mg ATPase. Purified mitochondrial, microsomal and brush border membrane fractions have been isolated from rabbit kidney.The microsomal anion-sensitive ATPase activity appears to be entirely of mitochondrial origin on the basis of the effects of inhibitors of mitochondrial Mg ATPase.The brush border membrane fraction is contaminated with mitochondrial fragments and contains an Mg ATPase activity with low anion-sensitivity. Further purification of this fraction causes parallel decreases in anion-sensitivity of the Mg ATPase activity and in cytochrome c oxidase activity.These results indicate that conclusions previously reached by other investigators for a role of anion-sensitive Mg ATPase in the bicarbonate reabsorption of the proximal tubule may no longer be tenable.  相似文献   

17.
A cDNA clone encoding a soluble inorganic pyrophosphatase (EC 3.6.1.1) of potato (Solanum tuberosum L.) was isolated by screening a developing tuber library with a heterologous probe. The central domain of the encoded polypeptide is nearly identical at the sequence level with its Arabidopsis homolog (J.J. Kieber and E.R. Signer [1991] Plant Mol Biol 16: 345-348). Computer-assisted analysis of the potato, Arabidopsis, and Escherichia coli soluble pyrophosphatases indicated a remarkably conserved organization of the hydrophobic protein domains. The enzymatic function of the potato protein could be deduced from the presence of amino acid residues highly conserved in soluble pyrophosphatases and was confirmed by its capacity to complement a thermosensitive pyrophosphatase mutation in E. coli. The potato polypeptide was purified from complemented bacterial cells and its pyrophosphatase activity was shown to be strictly dependent on Mg2+ and strongly inhibited by Ca2+. The subcellular location of the potato pyrophosphatase is unknown. Structure analysis of the N-terminal protein domain failed to recognize typical transit peptides and the calculated molecular mass of the polypeptide (24 kD) is significantly inferior to the values reported for the plastidic (alkaline) or mitochondrial pyrophosphatases in plants (28-42 kD). Two unlinked loci could be mapped by restriction fragment length polymorphism analysis in the potato genome using the full-length cDNA as probe.  相似文献   

18.
Three rat liver nucleoside(5′) diphosphosugar (NDP-sugar) or nucleoside(5′) diphosphoalcohol pyrophosphatases are described: two were previously identified in experiments measuring Mg2+-dependent ADP-ribose pyrophosphatase activity (Miró et al. (1989) FEBS Lett. 244, 123–126), and the other is a new, Mn2+-dependent ADP-ribose pyrophosphatase. They are resolved by ion-exchange chromatography, and differ by their substrate and cation specificities, KM values for ADP-ribose, pH-activity profiles, molecular weights and isoelectric points. The enzymes were tested for activity towards: reducing (ADP-ribose, IDP-ribose) and non-reducing NDP-sugars (ADP-glucose, ADP-mannose, GDP-mannose, UDP-mannose, UDP-glucose, UDP-xylose, CDP-glucose), CDP-alcohols (CDP-glycerol, CDP-ethanolamine, CDP-choline), dinucleotides (diadenosine pyrophosphate, NADH, NAD+, FAD), nucleoside(5′) mono- and diphosphates (AMP, CMP, GMP, ADP, CDP) and dTMP p-nitrophenyl ester. Since the enzymes have not been purified to homogeneity, more than three pyrophosphatases may be present, but the co-purification of activities, thermal co-inactivation, and inhibition experiments give support to: (i) an ADP-ribose pyrophosphatase highly specific for ADP(IDP)-ribose in the presence of Mg2+, but active also on non-reducing ADP-hexoses and dinucleotides (not on NAD+) when Mg2+ was replaced with Mn2+; (ii) a Mn2+-dependent pyrophosphatase active on ADP(IDP)-ribose, dinucleotides and CDP-alcohols; (iii) a rather unspecific pyrophosphatase that, with Mg2+, was active on AMP(IMP)-containing NDP-sugars and dinucleotides (not on NAD+), and with Mn2+, was also active on non-adenine NDP-sugars and CDP-alcohols. The enzymes differ from nucleotide pyrophosphatase/phosphodiesterase-I (NPPase/PDEaseI) by their substrate specificities and by their cytosolic location and solubility in the absence of detergents. Although NPPase/PDEaseI is much more active in rat liver, its known location in the non-cytoplasmic sides of plasma and endoplasmic reticulum membranes, together with the known cytoplasmic synthesis of NDP-sugars and CDP-alcohols, permit the speculation that the pyrophosphatases studied in this work may have a cellular role.  相似文献   

19.
Activities and properties of adenosine triphosphatases (ATPases) were studied in mitochondrial and microsomal fractions of cestodes Bothriocephalus scorpii parasitizing in pyloric appendages of the Brandt’s bullhead Myoxocephalus brandti. The highest activity was revealed in the mitochondrial fraction. The mitochondrial and microsomal fractions of B. scorpii had the ATPase activity dependent on the presence of cations Mg2+, Mn2+, and Ca2+. Effects of ions and inhibitors on the B. scorpii ATPase activity with various cations were. Both subcellular fractions were able to hydrolyze, apart from ATP, also GTP, CTP, and UTP.  相似文献   

20.
《Insect Biochemistry》1986,16(3):525-537
Ecdysone 20-monooxygenase, the enzyme system that hydroxylates ecdysone to 20-hydroxyecdysone, was characterized in wandering stage larvae of Drosophila melanogaster using an in vitro radioassay in conjunction with analytical thin layer chromatography. 20-Hydroxyecdysone was confirmed to be the product of the enzyme radioassay system by high pressure liquid chromatography. The 20-monooxygenase was found to be most active in a 0.10 M phosphate buffer, pH 7.5, was inhibited by Ca2+, Mg2+ and Se4+ and exhibited a temperature optimum at 35°C. Differential centrifugation, sucrose step gradient centrifugation, electron microscopy and organelle-marker enzyme analysis revealed that ecdysone 20-monooxygenase activity is associated with both the mitochondrial and microsomal fractions. Substrate kinetics experiments indicated that the mitochondrial and microsomal monooxygenase systems exhibit apparent Kms for ecdysone of 6.4 × 10−8 and 9.9 × 10−8 M, respectively, with apparent Vmaxs of 4.1 and 10.2 pg 20-hydroxyecdysone formed/min per mg tissue equiv., respectively. Both monooxygenase systems were inhibited by their product 20-hydroxyecdysone. The cytochrome P-450 nature of these insect steroid hydoxylases was initially suggested by their requirement for NADPH, NADH was approximately half as effective in supporting the mitochrondrial monooxygenase activity. In addition, both monooxygenase systems were inhibited by carbon monoxide, ellipticine, p-chloromercuribenzoate, metyrapone and p-aminoglutethimide but not by cyanide. Photochemical action spectra of ecdysone 20-monooxygenase activity confirmed the cytochrome P-450 dependency of both the mitochondrial and microsomal ecdysone 20-hydroxylase systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号