首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Fumonisins are a group of structurally related mycotoxins produced by Gibberella fujikuroi. The fungus produced fumonisin B1 (FB1) as early as 18 hour in a defined medium containing 1.25 mM or 2.5 mM ammonium phosphate, whereas fumonisin B1 production was repressed for 75 hour and 125 hour when mycelia were resuspended in media containing ammonium phosphate at 10 mM or 20 mM, respectively. Although total fumonisin B1 production was greater in resuspension cultures grown in higher concentrations of ammonium phosphate, the accumulation was independent of the inoculum size and carbon/nitrogen ratio. The addition of ammonium phosphate to cracked corn cultures also repressed fumonisin B1 production by 97%, and persisted for at least three weeks. Thus, biosynthesis of fumonisin B1 is regulated by a mechanism involving nitrogen metabolite repression, suggesting that control strategies that target the regulatory elements of nitrogen metabolism may be effective at reducing the risk of fumonisin contamination in food.  相似文献   

2.
A High cephamycin C producing strain of Nocardia lactam-durans was used to study cell growth and antibiotics production in defined media. Batch fermentations in shake flasks and stirred tanks showed that antibiotic production occurred during cell growth and the production rate rapidly decline as the growth slowed. Glutamate served as a primary substrate during this phase. Later, ammonia was utilized along with a remainder of the glucose. Rapid antibiotic production occurred in this phase. Increased glutamate promoted higher growth, a rise in ammonium ion concentration, and a marked reduction in antibiotic titers. An increase of the glucose concentration along with the glutamate concentration balanced to the medium; no ammonium ion rise occurred and a peak specific antibiotic titer comparable to the control medium was obtained. In a phosphate-limited medium, cell growth equivalent to the control medium and increased antibiotic titers were obtained. In these experiments, adjustment of Na(+) and K(+) ion concentration equal to that in the control medium was found to be important. Based on carbon and nitrogen balances, the activity of the key nitrogen metabolism enzymes, and the published literature, a two-stage model of regulation is suggested.  相似文献   

3.
A new bacterium producing a novel transfructosylating enzyme was isolated from soil and designated as Bacillus macerans EG-6. Various culture conditions for enzyme production were optimized in a flask culture. 1% (w/v) sucrose as a carbon source and a mixed nitrogen source (1% yeast extract, 1% polypeptone, and 0.5% ammonium chloride) gave the best enzyme production. Addition of phosphate and magnesium ion into the medium enhanced the enzyme yield. Optimum culture pH and temperature were 7.0 and 37?°C, respectively. Under optimal culture conditions, transfructosylating enzyme was rapidly produced in the early growth period, thereafter invertase activity was predominant as the culture proceeded. Using the culture filtrate, production of fructooligosaccharides from sucrose was preliminarily carried out. In a low sucrose concentration (200?g/l), transfructosylating activity competes with invertase activity in sucrose utilization. Subsequently, low fructooligosaccharide yield (20%) was achieved due to liberation of high amounts of glucose and fructose. The best oligosaccharide yield (43%) was achieved when 500?g/l sucrose was utilized.  相似文献   

4.
Monascus rubiginosus ATCC 16367 was cultivated aerobically in media containing ammonium and nitrate as nitrogen source. The pH of the medium was adjusted at different times, the pH of the nitrate medium being lowered to the pH of the ammonium medium and the pH of the ammonium medium raised to that of the nitrate. More phosphate was taken up on the nitrate medium, but potassium uptake did not start until 24h. On the ammonium medium, both were taken up in parallel from the beginning, but the amount of phosphate taken up never reached the same level as on nitrate medium. When the pH was adjusted, the uptakes changed, especially on the ammonium medium where a great increase in phosphate uptake was observed. More conidia were formed on the nitrate medium and more pigment on the ammonium medium. When the pH of either media was adjusted, the development of conidia and pigment production changed to that of the other control medium where the pH evolved normally in the direction of the change, regardless of the source of nitrogen. The reasons for the development of conidia on nitrate medium or where the pH is high, and the production of pigment on ammonium medium or at low pH is discussed.  相似文献   

5.
The effect of sea water on protein synthesis and growth of some species of Fungi Imperfecti was investigated. The dry weight of mycelia was greater from sea water medium than from distilled water medium in most instances; however, in a few there was a marked reduction in growth. The beneficial effect could not be ascribed to sodium choride or phosphate ion but may be due to the magnesium ion in sea water. This is indicated by the increase in mycelial yield and protein synthesis, even above that obtained with sea water, when magnesium ion was added to the medium. The reduction in yield and protein synthesis in some instances may be attributed to metal interactions; this possibility is being investigated further.  相似文献   

6.
An unstructured kinetic model for xanthan production is described and fitted to experimental data obtained in a stirred batch reactor. The culture medium was composed of several nitrogen sources (soybean hydrolysates, ammonium and nitrate salts) consumed sequentially. The model proposed is able to describe this sequential consumption of nitrogen sources, the consumption of inorganic phosphate and carbon, the evolution of biomass, and production of xanthan. The parameter estimation has been performed by fitting the kinetic model in differential form to experimental data. Runs of the model for simulating xanthan gum production as a function of the initial concentration of inorganic phosphate have shown the positive effect of phosphate limitation on xanthan yield, though diminishing rates of production. The model was used to predict the kinetic parameters for a medium containing a 2-fold lower initial phosphate concentration. When tested experimentally, the measured fermentation parameters were in close agreement with the predicted model values, demonstrating the validity of the model.  相似文献   

7.
确定了工程菌MM2中霍乱毒素B亚单位(CTB)在含乳酸培养基中的高表达方案。采用两阶段控制培养温度(30℃→37℃)可提高CTB产量4倍,提高后期pH值(72→84)可提高CTB比表达水平214倍,中间补加乙酸钠可提高CTB产量65%。在5L发酵罐培养菌密度OD600达30,CTB产量达1867mg/L,产物在培养液中以多聚体形式存在,具有抗原性。  相似文献   

8.
The effect of process optimization on succinic acid production by Escherichia coli W3110 and on enzymes involved in the reverse tricarboxylic acid cycle was studied. Approximately, 7.02 g L-1 of succinic acid was produced in 60 h at pH 7.0 in 500 mL anaerobic bottles containing 300 mL of the medium, wherein the sucrose concentration was 2.5%, the ratio of tryptone to ammonium hydrogen phosphate was 1:1, and the concentration of magnesium carbon ate was 1.5%. When these optimized fermentation conditions were employed in a 10 L bioreactor, 11.2 g L-1 of succinic acid was produced in 48 h. This is a 10-fold increase in succinic acid production from the initial titer of 0.94 g L-1. This clearly indicates the importance of process optimization, where by manipulating the media composition and production conditions, a remarkable increase in the production of the desired biomolecule can be obtained. The production of succinic acid is a multi-step reaction through the reverse tricarboxylic acid cycle. A linear relationship was observed between succinic acid production and the enzyme activities. The enzyme activities were found to increase in the order phospho-enol-pyruvate carboxylase相似文献   

9.
Fermentation media with different initial concentrations of ammonium and phosphate salts were used to study the inhibitory effects of those ions on growth and production of epothilone in Sorangium cellulosum and Myxococcus xanthus. The native epothilone producer, S. cellulosum was more sensitive to ammonium and phosphate than the heterologous producer, M. xanthus. An ammonium concentration of 12 mM reduced epothilone titers by 90% in S. cellulosum but by only 40% in M. xanthus. When 5 mM phosphate was added to the medium, production in both strains was 60% lower. Higher phosphate concentrations had little additional effect on M. xanthus titers, but epothilone production with 17 mM extra-cellular phosphate in S. cellulosum was 95% lower than in the control condition. The effect of iron supplementation to the fermentation medium was also investigated. Both strains showed best production with 20 microM iron added to the medium.  相似文献   

10.
Cell growth and lincomycin production were measured in batch cultures of Streptomyces lincolnensis in chemically defined media. In these fermentations the specific rate of antibiotic production was maximal during growth and always declined at the end of the growth phase. It was found that both phosphate and ammonium salts, while required for cell growth, had negative effects on antibiotic production. By increasing the concentration of magnesium sulfate, it was possible to increase both the production rates and final titers of lincomycin. The mechanism for this effect was found to be the reduction of soluble phosphate in the medium through the precipitation of ammonium magnesium phosphate. Lincomycin production rates were not inhibited by glucose at concentrations of up to 30 g/L.  相似文献   

11.
The genetic algorithm was used effectively to find the optimal values of eight process variables for the maximum laccase production by Daedalea flavida in a stationary culture. The algorithm was modified suitably to improve laccase production with 18 parallel experiments in 4 generations. A high enzyme titer of 65 % was achieved after the optimization and compared to the titer obtained before optimization. To study the effect of the surface immobilized growth on the enzyme production, the fungus was grown on three solid carriers. When cultured on polymer composite fibers, polyurethane foam, or steel wool, at least 2.5 times more biomass was produced, compared to the biomass produced in support-free growth. On the contrary, the mycelia grown on solid support produced much less laccase than non-adhering mycelia. Four parallel runs of batch-fed cultures were done, using the cell mass of D. flavida to evaluate the influence of four different volumes of medium exchanged on laccase production. For sustainable production of the enzyme, complete exchange of medium was favorable, where the laccase activity increased continuously in six consecutive cycles, though, 50 % exchange of medium produced the maximum laccase in terms of mean enzyme activity obtained in six cycles.  相似文献   

12.
林肯链霉菌合成林可霉素代谢调节的研究   总被引:5,自引:0,他引:5  
在摇瓶条件下研究了葡萄糖、铵盐、磷酸盐对林可霉素产生菌林肯链霉菌的生长及林可霉素生物合成的影响。发酵过程中林可霉素的合成主要发生在菌体生长期,逐渐下降。使用6%的葡萄糖未发现通常所说的“葡萄糖效应”。0.2%铵盐有利于细胞生长,但0.8%NH+4对林可霉素的生物合成具有抑制作用。发酵48h后补加0.6% NH,对林可霉素的生成没有显著影响。0.05%~0.1%磷酸盐对林可霉素合成具有较强的抑制作用。并就磷酸盐对菌体由初级代谢转向次级代谢的作用作了初步考察。  相似文献   

13.
To improve ATP production from adenine, we optimized cultivation and reaction conditions for the ATP producing strain, Corynebacterium ammoniagenes KY13510. In the conventional method, 28% NH4OH has been used both to adjust pH during cultivation and reaction, and to provide nitrogen for cell growth. In the ATP-producing reaction, high concentrations of inorganic phosphate and magnesium ion are needed, which form magnesium ammonium phosphate (MgNH4PO4) precipitate. To keep inorganic phosphate and magnesium ions soluble in the reaction mixture, it was indispensable to add phytic acid as a chelating agent of divalent metal ions. Under such conditions, 37 mg/ml (61.2 mM) ATP was accumulated in 13 h (Appl. Microbiol. Biotechnol. 21, 143 1985). If ammonium ion was depleted from the reaction mixture to avoid MgNH4 PO4 formation, we expected that there was no need to add phytic acid and ATP accumulation might be improved. Therefore, we obtained the cultured broth of C. ammoniagenes KY13510 strain with low ammonium ion content (less than 1 mg/ml as NH3) by the method that a part of alkali solution (28% NH4OH) for pH control was replaced with 10 N KOH. Using this culture broth, ATP producing reaction was done in 2-liter jar fermentor, controlling the pH of the reaction mixture with 10 N KOH. Under these conditions, the rate of ATP accumulation improved greatly, and 70.6 mg/ml (117 mM) ATP was accumulated in 28 h. The molar conversion ratio from adenine to ATP was about 82%. Phytic acid was slightly inhibitory to ATP formation under these ammonium-limited conditions.  相似文献   

14.
When mouse hybridoma cells were grown in culture media which were made hyperosmotic through the addition of NaCl or sucrose, the specific rate of antibody production increased with medium osmolality, reaching approx. 1.9 times the level obtained at physiological osmolality. However, due to a simultaneous reduction of the maximal cell density in the hyperosmotic media, the effect of the increased production rate did not give significant increases in the maximum antibody titer obtained in the cultures. When the osmoprotective compound, glycine betaine, was included in the NaCl- or sucrose-stressed cultures, the specific antibody production rate wasincreased up to 2.6-fold and maximum antibody titer up to twofold over that obtained in the control culture (physiological osmolality). A similar pattern of response was observed when other osmoprotective compounds (sarcosine, proline, glycine) were added to NaCl-stressed hybridoma cell cultures. For the present experiments, the results suggest that medium osmolality, rather than growth rate, will determine the specific antibody production rate by hybridoma cell line 6H11 growing in hyperosmotic culture media. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
Growth of Streptomyces viridochromogenes on a solid glycerol-NH4NO3 salts medium was accompanied by the formation of aerial mycelia and spores. Adding 0.5% or more casein hydrolysate to the medium stimulated growth while completely repressing the formation of aerial mycelia and spores. This repression was temporary, as evidenced by the fact that transfer of the organisms to media not containing casein hydrolysate resulted in the appearance of aerial mycelia and spores. The effects of individual amino acids were tested. Glycine retarded growth and repressed formation of both aerial mycelia and spores. L-Aspartic acid, L-glutamic acid, and L-histidine stimulated or had little effect on growth and repressed formation of spores but not aerial mycelia. Repression by casein hydrolysate could not be attributed to the carbon/nitrogen ratio or the pH of the medium. Adding 1.25 to 2.5 mM adenine to the medium caused a reversal of the casein hydrolysate repression of aerial mycelium formation but did not reverse repression of sporulation. Dimethyladenine and 8-azaguanine had an effect similar to that of adenine, but a variety of other purine or pyrimidine derivatives had no effect on casein hydrolysate repression. The repression of aerial mycelium and spore formation by casein hydrolysate occurred only in media containing 15 mM or more phosphate. Aerial mycelia and spores were formed in media containing casein hydrolysate and 3 mM or less phosphate.  相似文献   

16.
To improve ATP production from adenine, we optimized cultivation and reaction conditions for the ATP producing strain, Corynebacterium ammoniagenes KY13510. In the conventional method, 28% NH4OH has been used both to adjust pH during cultivation and reaction, and to provide nitrogen for cell growth. In the ATP-producing reaction, high concentrations of inorganic phosphate and magnesium ion are needed, which form magnesium ammonium phosphate (MgNH4PO4) precipitate. To keep inorganic phosphate and magnesium ions soluble in the reaction mixture, it was indispensable to add phytic acid as a chelating agent of divalent metal ions. Under such conditions, 37 mg/ml (61.2 mM) ATP was accumulated in 13 h (Appl. Microbiol. Biotechnol. 21, 143 1985). If ammonium ion was depleted from the reaction mixture to avoid MgNH4PO4 formation, we expected that there was no need to add phytic acid and ATP accumulation might be improved. Therefore, we obtained the cultured broth of C. ammoniagenes KY13510 strain with low ammonium ion content (less than 1 mg/ml as NH3) by the method that a part of alkali solution (28% NH4OH) for pH control was replaced with 10 N KOH. Using this culture broth, ATP producing reaction was done in 2-liter jar fermentor, controlling the pH of the reaction mixture with 10 N KOH. Under these conditions, the rate of ATP accumulation improved greatly, and 70.6 mg/ml (117 mM) ATP was accumulated in 28 h. The molar conversion ratio from adenine to ATP was about 82%. Phytic acid was slightly inhibitory to ATP formation under these ammonium-limited conditions.  相似文献   

17.
A defined medium of low osmolarity was developed permitting growth of Rhizobium meliloti with generation times of approximately 2.8 h doubling-1. The effects of sodium, potassium, magnesium, ammonium, chloride, sulfate, phosphate, bicarbonate and acetate ions on the growth rate of R. meliloti were determined. Sodium, potassium and ammonium ions had little effect on growth at concentrations of 100 mEq or less; magnesium ion inhibited growth severely at concentrations of 50 mEq (25 mM). Of the anions, chloride and sulfate appeared to have little effect while phosphate, bicarbonate, and acetate inhibited growth at concentrations of as little as 25 mEq. The addition of proline, glutamate, or betaine to cells growing in inhibitory concentrations of NaCl did not relieve the inhibition. When grown in the presence of inhibitory levels of NaCl, the intracellular concentration of glutamate but not of proline or gamma amino butyric acid increased 5-fold.  相似文献   

18.
Among the various lipidic and non-lipidic substances, normal alkanes within the chain lengths of C-12 to C-20 served as the best carbon substrates for the production of extracellular lipase by Pseudomonas species G6. Maximum lipase production of 25 U/ml of the culture broth was obtained by using n-hexadecane as the sole carbon substrate. The optimum pH of 8 and temperature of 34 + 1 degrees C were demonstrated for the production of lipase in n-hexadecane substrate. The optimum concentration of iron, which played a critical role on the lipase production, was found to be 0.25 mg/l. Lipase production could be enhanced to nearly 2.4-fold by using tributyrin at a concentration of 0.05% (v/v) in the culture medium. High recovery of the lipase protein (83%) from the culture broth was achieved by treating the culture supernatant with Silicone 21 Defoamer followed by ammonium sulfate (60% saturation) fractionation.  相似文献   

19.
The inhibitory effect of the concentrations of medium components on the growth of Methylobacterium sp. for poly--hydroxybutyrate production was investigated by measuring the specific growth rates for various concentrations of each medium component. When the methanol concentration was increased, the cell growth decreased and was strongly inhibited above 6% (v/v) methanol. Ammonia, calcium and iron ion did not significantly inhibit the cell growth while there were some inhibitory effects at high concentrations of sodium, potassium, and magnesium. In particular, phosphate gave most significant inhibition at concentrations higher than 75 mM. By using an automatic feeding control system of methanol, ammonia, phosphate, and minerals, their concentrations were maintained within the level necessary to reduce the inhibition of medium components. The finial dry cell weight of Methylobacterium sp. in such a system was 172 g/l at 84 h.  相似文献   

20.
AIMS: Statistical optimization of phytase production by a thermophilic mould Sporotrichum thermophile in a cost-effective cane molasses medium. METHODS AND RESULTS: Sporotrichum thermophile secreted phytase in cane molasses medium at 45 degrees C and 250 rev min(-1) after 5 days. The important factors identified by Plackett-Burman design (magnesium sulfate, Tween 80, ammonium sulfate and incubation period) were further optimized by response surface methodology (RSM). An overall 107% improvement in phytase production was achieved due to optimization. Supplementation of the medium with inorganic phosphate repressed the enzyme synthesis. When inorganic phosphate was reduced from the cane molasses medium by treatment with calcium chloride, the enzyme production increased. The phytase activity was not affected by the enzyme treatment with trypsin and pepsin. CONCLUSIONS: A twofold increase in phytase production was achieved due to optimization using statistical designs in a cost-effective cane molasses medium. SIGNIFICANCE AND IMPACT OF THE STUDY: Phytase production was doubled due to optimization. The enzyme, being resistant to trypsin and pepsin, thermostable and acid stable, can find application in animal feed industry for improving nutritional status of the feed and combating environmental phosphorus pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号