首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the extracellular phosphatases produced by the terrestrial green alga Chlamydomonas reinhardtii in response to phosphorus deprivation. Phosphorus-deprived cells increase extra-cellular alkaline phosphatase activity 300-fold relative to unstarved cells. The alkaline phosphatases are released into the medium by cell-wall-deficient strains and by wild-type cells after treatment with autolysin, indicating that they are localized to the periplasm. Anion-exchange chromatography and analysis by nondenaturing polyacrylamide gel electrophoresis revealed that there are two major inducible alkaline phosphatases. A calcium-dependent enzyme composed of 190-kD glycoprotein subunits accounts for 85 to 95% of the Alkaline phosphatase activity. This phosphatase has optimal activity at pH 9.5 and a Km of 120 to 262 microns for all physiological substrates tested, with the exception of phytic acid, which it cleaved with a 50-fold lower efficiency. An enzyme with optimal activity at pH 9 and no requirement for divalent cations accounts for 2 to 10% of the alkaline phosphatase activity. This phosphatase was only able to efficiently hydrolyze arylphosphates. The information reported here, in conjunction with the results of previous studies, defines the complement of extracellular phosphatases produced by phosphorus-deprived Chlamydomonas cells.  相似文献   

2.
Summary Endothelial cells contain a variety of specific protein tyrosine phosphatases and an acid phosphatase differing from other known phosphatases. The highest activity of this acid phosphatase with artificial or unspecific substrates is present in the afferent arterioles and glomeruli of human kidney, and the activity is inhibited by nephrotoxic fluoride concentrations, suggesting that it plays a role in circulatory regulation. Here the activity was characterised with physiological substrates. An incubation mixture containing phosphotyrosine or phosphoserine was stable at pH 5 when phosphate-precipitating lead was chelated with tartrate. The activities were studied in frozen sections. Only phosphotyrosine was hydrolysed by some cells. High activity of tartrate-resistant phosphotyrosine phosphatase was present in lymphocytes, endothelial cells of afferent arterioles, and glomerular mesangial cells of kidney, decidual cells, and alveolar macrophages. In lymphocytes the activity was fluoride-resistant and vanadate-sensitive, in other cells fluoride- and vanadate-sensitive. In decidual cells and alveolar macrophages, the activity is due to specific osteoclastic/macrophagic tartrate-resistant acid phosphatase, in lymphocytes to specific protein tyrosine phosphatases, and in endothelial and mesangial cells to a protein tyrosine phosphatase-like acid phosphatase. The results suggest that in endothelial cells of the afferent arterioles, mesangial cells, and lymphocytes the cellular activities are regulated by high constitutive phosphotyrosine phosphatase activity and this may be related to the exceptional cyclosporin A sensitivity of these cells.  相似文献   

3.
Inositol-deficiency abnormalized the cell envelope, wall and membrane, and the polysaccharides were released out of the cells in a greater amount in inositol-deficiency than in inositol-sufficiency. This release was most notable in the absence of inositol under the tested conditions. The released amount decreased when the culture was provided with inositol or phospholipids, or deprived of all growth-promoting vitamins. Gel filtration of released polysaccharides showed that the lower molecular fraction increased in inositol-deficiency than in sufficiency. DEAE-Sephadex chromatography of released polysaccharides showed the presence of fractions specific for inositol-deficiency which contained mannan and phosphates. Inositol-deficiency also caused enlarging of the pore size of the cell-wall. The relationship between the release of polysaccharides and the syntheses of cell-wall polysaccharides was investigated and discussed.  相似文献   

4.
Phosphatases; origin,characteristics and function in lakes   总被引:18,自引:4,他引:14  
Phosphatases catalyze the liberation of orthophosphate from organic phosphorus compounds. The total phosphatase activity in lake water results from a mixture of phosphatases localized on the cell surfaces of algae and bacteria and from dissolved enzymes supplied by autolysis or excretion from algae, bacteria and zooplankton. External lake water phosphatases usually have pH optima in the alkaline region. Acid phosphatases generally seem to be active in the internal cell metabolism. The synthesis of external alkaline phosphatases is often repressed at high phosphate concentrations and derepressed at low phosphate concentrations. Phosphatase activity has therefore been used as a phosphorus deficiency indicator in algae and in natural plankton populations. The possibilities for this interpretation of phosphatase activity in lake water are limited, however, and this is discussed. The in situ hydrolysis capacity, i.e. the rate by which orthophosphate is released from natural substrates, is unknown. However, we advocate that this process is important and that the rate of substrate supply, rather than phosphatase activity, limits the enzymatic phosphate regeneration.  相似文献   

5.
Alkaline phosphatase, an enzyme secreted by Bacillus intermedius S3-19 cells to the medium, was also detected in the cell wall, membrane, and cytoplasm. The relative content of alkaline phosphatase in these cell compartments depended on the culture age and cultivation medium. The vegetative growth of B. intermedius on 0.3% lactate was characterized by increased activity of extracellular and membrane-bound phosphatases. The increase in lactate concentration to 3% did not affect the activity of membrane-bound phosphatase but led to a decrease in the activity of the extracellular enzyme. Na2HPO4 at a concentration of 0.01% diminished the activity of membrane-bound and extracellular phosphatases. CoCl2 at a concentration of 0.1 mM released membrane-bound phosphatase into the medium. By the onset of sporulation, phosphatase was predominantly localized in the medium and in the cell wall. As is evident from zymograms, the multiple molecular forms of phosphatase varied depending on its cellular localization and growth phase.  相似文献   

6.
A study was made of the enzyme content of the isolated cell walls and of a plasma-membrane preparation obtained by centrifugation after enzymic digestion of the cell walls of baker's yeast. The isolated cell walls showed no hexokinase, alkaline phosphatase, esterase or NADH oxidase activity. It was concluded that these enzymes exist only in the interior of the cell. Further, only a negligible activity of deamidase was detectable in the cell walls. Noticeable amounts of saccharase, phosphatases hydrolysing p-nitrophenyl phosphate, ATP, ADP, thiamin pyrophosphate and PP(i), with optimum activity at pH3-4, and an activity of Mg(2+)-dependent adenosine triphosphatase at neutral pH, were found in the isolated cell walls. During enzymic digestion, the other activities appearing in the cell walls were mostly released into the medium, but the bulk of the Mg(2+)-dependent adenosine triphosphatase remained in the plasma-membrane preparation. Accordingly, it may be assumed that the enzymes released into the medium during digestion are located in the cell wall outside the plasma membrane, whereas the Mg(2+)-dependent adenosine triphosphatase is an enzyme of the plasma membrane. This enzyme differs from the phosphatases with pH optima in the range pH3-4 with regard to location, pH optimum, substrate specificity and different requirement of activators.  相似文献   

7.
When a rat hepatoma cell (R-Y121B) homogenate was incubated at 37 degrees C, 30-70% of the total alkaline phosphatase was released into the supernatant fluid from the precipitate fractions. The release reached a plateau level after 10 h of incubation at 37 degrees C. The optimum pH value for the release was 7.4. Alkaline phosphatase activity increased during the incubation of the cell homogenates, but this increase was independent of the enzyme release. Serum increased not only alkaline phosphatase activity in the cultured cells but also enzyme release in their homogenates. In addition, we examined a rat liver homogenate and the following 11 cell lines: 3 hepatoma cell lines, including the R-Y121B cell line, 4 liver cell lines, 2 human urinary bladder carcinoma cell lines, a kidney cell line, and a mouse adrenal tumor cell line. Only in the cultured liver cell line and hepatoma cell lines, 30-60% of the total enzyme was released into the soluble fraction from the precipitate fractions; the release was not observed in the other cell lines, nor in the rat liver homogenate. The release of alkaline phosphatase took place in both heat-stable and heat-labile alkaline phosphatases. Alkaline phosphatase, extracted from cell homogenates, showed two bands during polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The mobilities of the two bands changed inversely with or without sodium dodecyl sulfate. In general, the alkaline phosphatase which showed slow mobility with sodium dodecyl sulfate was more readily released from the plasma membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Alkaline phosphatase, an enzyme secreted byBacillus intermedius S3-19 cells to the medium, was also detected in the cell wall, membrane, and cytoplasm. The relative content of alkaline phosphatase in these cell compartments depended on the culture age and cultivation medium. The vegetative growth ofB. intermedius on 0.3% lactate was characterized by increased activity of extracellular and membrane-bound phosphatases. The increase in lactate concentration to 3% did not affect the activity of membrane-bound phosphatase but led to a decrease in the activity of the extracellular enzyme. Na2HPO4 at a concentration of 0.01 % diminished the activity of membrane-bound and extracellular phosphatases. CoCl2 at a concentration of 0.1 mM released membrane-bound phosphatase into the medium. By the onset of sporulation, phosphatase was predominantly localized in the medium and in the cell wall. As is evident from zymograms, the multiple molecular forms of phosphatase varied depending on its cellular localization and growth phase.  相似文献   

9.
Acid phosphatases hydrolyse phosphomonoesters at acidic pH in a variety of physiological contexts. The recently defined class C family of acid phosphatases includes the 32 kDa LppC lipoprotein of Streptococcus equisimilis. To define further the distribution of acid phosphatases in the genus Streptococcus we have examined the equine pathogens Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus. Whole cell assays indicated that these organisms possess two acid phosphatases with activity optima at pH 5.0 and pH 6.0-6.5 and that only the former of these was, like LppC, resistant to EDTA. Western blotting with a polyclonal anti-LppC antiserum revealed the presence of a cross-reactive 32 kDa protein in both organisms. The cross-reactive protein in S. equi was shown to be a surface accessible lipoprotein as its processing was inhibited by the antibiotic globomycin and it was released from whole cells by treatment with trypsin. The presence of DNA sequences homologous to the S. equisimilis lppC gene were confirmed by PCR. These data strongly suggest that Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus produce a lipoprotein acid phosphatase homologous to LppC of S. equisimilis.  相似文献   

10.
The effect of pH during formalin fixation on acid phosphatases in human tissues was studied. Lysosomal-type acid phosphatase was sensitive to alkaline fixation, being completely inactive after fixation at pH 9.0. Prostatic and tartrate-resistant osteoclastic/macrophagic types were alkaline fixation-resistant, as was an acid phosphatase localized in endothelium, endometrial stromal cells and intestinal nerves. The latter activity was further separable into fluoride- and tartrate-sensitive beta-glycerophosphatase and fluoride-sensitive, tartrate-resistant alpha-naphthyl phosphatase. The activities appeared to represent either different, tightly associated enzymes or separate activity centres of a single enzyme. Alkaline fixation-resistant alpha-naphthyl phosphatase at endothelial, endometrial and neuronal sites was also well demonstrated in unfixed or neutral formalin-fixed sections as tartrate-resistant activity similar to classical tartrate-resistant acid phosphatase, but these phosphatases appear to be antigenically different. Alkaline fixation-resistant acid phosphatase showed a restricted tissue distribution both in endothelium (mainly in vessels of abdominal organs) and at neuronal sites (only in intestinal nerves). Alkaline fixation-resistant acid phosphatase appears to represent a previously unknown or uncharacterized enzyme activity whose chemical properties could not be classified as any previously known type of acid or other phosphatases.  相似文献   

11.
Sopina VA 《Tsitologiia》2006,48(7):610-616
Three different phosphatases ("slow", "middle" and "fast") were found in Amoeba proteus (strain B) after PAGE and a subsequent gel staining in 1-naphthyl phosphate containing incubation mixture (pH 9.0). Substrate specificity of these phosphatases was determined in supernatants of homogenates using inhibitors of phosphatase activity. All phosphatases showed a broad substrate specificity. Of 10 tested compounds, p-nitrophenyl phosphate was a preferable substrate for all 3 phosphatases. All phosphatases were able to hydrolyse bis-p-nitrophenyl phosphate and, hence, displayed phosphodiesterase activity. All phosphatases hydrolysed O-phospho-L-tyrosine to a greater or lesser degree. Only little differences in substrate specificity of phosphatases were noticed: 1) "fast" and "middle" phosphatases hydrolysed naphthyl phosphates and O-phospho-L-tyrosine less efficiently than did "slow" phosphatase; 2) "fast" and "middle" phosphatases hydrolysed 2- naphthyl phosphate to a lesser degree than 1-naphthyl phosphate 3) "fast" and "middle" phosphatases hydrolysed O-phospho-L-serine and O-phospho-L-threonine with lower intensity as compared with "slow" phosphatase; 4) as distinct from "middle" and "slow" phosphatases, the "fast" phosphatase hydrolysed glucose-6-phosphate very poorly. The revealed broad substrate specificity of "slow" phosphatase together with data of inhibitory analysis and results of experiments with reactivation of this phosphatase by Zn2+-ions after its inactivation by EDTA strongly suggest that only the "slow" phosphatase is a true alkaline phosphatase (EC 3.1.3.1). The alkaline phosphatase of A. proteus is secreted into culture medium where its activity is low. The enzyme displays both phosphomono- and phosphodiesterase activities, in addition to supposed protein phosphatase activity. It still remains unknown, to which particular phosphatase class the amoeban "middle" and "fast" phosphatases (pH 9.0) may be assigned.  相似文献   

12.
Lysobacter enzymogenes produces an extracellular phosphatase (EC. 3.1.3.1) during the stationary phase of growth. The cells also produce a cell-associated alkaline phosphatase. This enzyme is found in the particulate fraction of cell extracts and may be membrane bound. The production of both phosphatases, especially the extracellular enzyme, is reduced by inorganic phosphate. The extracellular phosphatase was purified to a specific activity of 270 U/mg primarily by chromatography on carboxymethyl cellulose and gel filtration. The enzyme is stable under normal storage conditions but is rapidly inactivated above 70 degrees. It consists of one polypeptide with an approximate molecular weight of 25,000. The pH optimum is 7.5, and the Km for p-nitrophenylphosphate is 2.2 X 10(-4) M. The enzyme degrades a number of other phosphomonoesters but at a reduced rate compared with the rate obtained with p-nitrophenylphosphate. Phosphate and arsenate inhibit the enzyme, but EDTA and other chelating agents have no effect. The lack of a metal ion requirement for activity, the lower molecular weight, the soluble nature of the enzyme, and the lower pH optimum clearly distinguish the extracellular phosphatase from the cell-associated phosphatase and from other bacterial phosphatases.  相似文献   

13.
A combination of enzyme kinetics and 51V NMR spectroscopy was used to identify the species of vanadate that inhibits acid phosphatases. Monomeric vanadate was shown to inhibit wheat germ and potato acid phosphatases. At pH 5.5, the vanadate dimer inhibits the human prostatic acid phosphatase whereas at pH 7.0 it is the vanadate monomer that inhibits this enzyme. The pH-dependent shift in the affinity of the prostatic phosphatase for vanadate is presumably due to deprotonation of an amino acid side chain in or near the binding site resulting in a conformational change in the protein. pH may be a subtle effector of the insulin-like vanadate activity in biological systems and may explain some of the differences in selectivity observed with the protein phosphatases.  相似文献   

14.
R. F. Matagne  R. Loppes 《Genetics》1975,80(2):239-250
In the green alga Chlamydomonas reinhardi, removal of inorganic phosphate from the culture medium results in the increase of phosphatase activity (derepression) in the wild-type (WT) strain as well as in a double mutant (P2Pa)) lacking the two main constitutive acid phosphatases. Following treatment of WT and P2Pa with N-methyl-N-nitro-N-nitrosoguanidine (MNNG), mutants were recovered which display very low phosphatase activities when grown in the absence of phosphate; as shown by electrophoresis, they lack one non-migrating phosphatase (PD mutants). This enzyme is active over a wide range of pH with an optimum at pH 7.5. The comparison of elctropherograms form WT and mutants grown on media with or without phosphate allowed us to provide a tentative definition of the pool of derepressible phosphatases in Chlamydomonas: in addition tothe neutral phosphatase lacking in PD mutants, Chlamydomonas produces two electrophoretic forms of alkaline phosphatase showing an optimal activity at pH 9.5.  相似文献   

15.
In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1).  相似文献   

16.
Since measurement of lysophosphatidate phosphatase activity is important in studies of tumorigenesis, we attempted to develop a simpler alternative to the more complex methods currently available. Measuring the phosphate released would permit use of the same method for a variety of phosphatases with physiological substrates, many of which are nonchromogenic. The Malachite green method of K. Itaya and M. Ui (1966, Clin. Chim. Acta 14, 361) has adequate sensitivity for quantitating phosphatase activity in biological samples. In samples with high endogenous phosphate concentrations pretreatment with 50 mg Dowex 1 x 10 (100-200 mesh, OH- form) usually permitted reliable determination of phosphatase activity. For 34 consecutive runs the mean relative difference [(phosphorus activity--vitamer activity)/phosphorus activity] obtained from the simultaneous measurement of both the phosphate released and the corresponding organic product (pyridoxal and pyridoxine) was -0.03 +/- 0.09. The within run and between run coefficients of variation (three runs of four to five replicates) were 0.05 and 0.04, respectively. Pyridoxine 5'-phosphate hydrolase activity (pH 10) in cultured skin cells (normal and cancerous) ranged from 2 to 12 nmol phosphorus/min. mg protein. Lysophosphatidate phosphatase activity (pH 7.4) ranged from 3 to 14 nmol phosphorus/min. mg protein. The current approach permits the measurement of phosphatase activity with a single method using a variety of substrates and incubation conditions.  相似文献   

17.
Sopina VA 《Tsitologiia》2001,43(7):701-707
Activity and thermoresistance of acid phosphatase were determined in supernatant of Amoeba proteus homogenates using 1-naphthyl phosphate (pH 4.0) and p-nitrophenyl phosphate (pH 5.5). Although tartrate-resistant and tartrate-sensitive acid phosphatases hydrolyse both substrates, the former mainly hydrolyses p-nitrophenyl phosphate and the latter 1-naphthyl phosphate. A decrease in the activity of the total and tartrate-sensitive acid phosphatases, when using 1-naphthyl phosphate, and of the total and tartrate-resistant acid phosphatases, when using p-nitrophenyl phosphate, was found in amoebae acclimated to 10 degrees C (10 degrees-amoebae) compared to those acclimated to 25 degrees C (25 degrees-amoebae). Using 1-naphthyl phosphate, the thermoresistance of the total acid phosphatase was lower in 10 degrees-amoebae than in 25 degrees-amoebae, but the thermostability of tartrate-resistant enzyme was the same in both groups of amoebae. Using p-nitrophenyl phosphate, the thermoresistance of the total and tartrate-resistant acid phosphatases was lower (the latter only slightly) in 10 degrees-amoebae than in 25 degrees-amoebae. It is suggested that at least with the use of 1-naphthyl phosphate a decrease in thermostability of the total acid phosphatase may be due to a decrease in thermoresistance of tartrate-sensitive enzyme. The results obtained confirm the author's previous data on the activity and thermostability of electrophoretic forms of acid phosphatase using 2-naphthyl phosphate in 10- and 25 degrees-amoebae (Sopina, 2001). It is the first case of discovering a correlation between changes in primary cell thermoresistance of amoebae cultured at different temperatures and changes in the activity and thermostability of acid phosphatase in their homogenates, with the number of electrophoretic forms of this enzyme and their mobility being permanent.  相似文献   

18.
Two kinds of myosin phosphatases were purified from fresh chicken gizzard smooth muscle. Alkaline phosphatase (CGP-a), which requires Mg2+, was most active at pH 8.6 with 2 to 4 mM Mg2+, and was essentially the same as the phosphatase we reported previously (J. Biochem. 99, 1027-1036 (1986]. On the other hand, neutral phosphatase (CGP-b), was most active at pH 7.5 with 0 to 2 mM Mg2+, and was similar to SMP-IV reported by Pato and Kerc (J. Biol. Chem. 260, 12359-12366 (1985]. Although both phosphatases showed similar Vm (4.8 to 13 mumol/mg/min) using phosphorylated myosin head as the substrate under optimal conditions, CGP-b had a smaller Km (3.7 to 6.7 microM) than CGP-a by about 4-fold. CGP-b showed a lower Vm (1.9 to 8.4 mumol/mg/min) for the isolated myosin light chain than myosin itself, while CGP-a showed rather higher Vm (17 to 32 mumol/mg/min). Although the activity of CGP-a decreased monotonically with increase of ionic strength, that of CGP-b increased slightly with increase in NaCl until 0.1 M and then decreased. Those results suggest that CGP-b may be the effective myosin phosphatase in vivo. The analysis by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that both phosphatases were composed of a single polypeptide having a molecular weight of 37,000. The tetrameric structure was assumed for both phosphatases, because the molecular weight in the native state was estimated as 140,000 or 145,000 for CGP-a or CGP-b, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In the free-living ameba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called “fast,” “intermediate,” and “slow” phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH values. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be either acid phosphatase, or protein tyrosine phosphatase. Based on data of inhibitor analysis, broad substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, and another localization in the ameba cell than of the fast and intermediate phosphatases, it is concluded that only the slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1).  相似文献   

20.
Summary The excretion of an acid phosphatase by Rhodotorula glutinis is related to the pH of the medium. During growth, the phosphatase excretion into the medium at a constant pH of 4.5 was 5 times higher than that observed at variable pH. After cultivation at a constant pH of 4.5 or at variable pH, cells were incubated at various pH values between pH 2 and 7. During this second incubation acid phosphatase release occured at pH 4.5 to 6.5 only. There was no release at pH 3.0; but when resting cells incubated at this pH were placed in a buffer solution at pH 5.5 a high activity was released. Extensive washing did not eliminate residual intrinsic acid phosphatase activity. These two types of acid phosphatase were phosphomonoesterases with an identical specificity for different substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号