首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The irradiance dependence of the efficiencies of photosystems I and II were measured for two pea (Pisum sativum [L.]) varieties grown under cold conditions and one pea variety grown under warm conditions. The efficiencies of both photosystems declined with increasing irradiance for all plants, and the quantum efficiency of photosystem I electron transport was closely correlated with the quantum efficiency of photosystem II electron transport. In contrast to the consistent pattern shown by efficiency of the photosystems, the redox state of photosystem II (as estimated from the photochemical quenching coefficient of chlorophyll fluorescence) exhibited relationships with both irradiance and the reduction of P-700 that varied with growth environment and genotype. This variability is considered in the context of the modulation of photosystem II quantum efficiency by both photochemical and nonphotochemical quenching of excitation energy.  相似文献   

2.
Cytochemical and immunocytochemical methods were used to localize photosystems I and II in barley (Hordeum vulgare L. cv Himalaya) chloroplasts. PSI activity, monitored by diaminobenzidine oxidation, was associated with the lumen side of the thylakoids of both grana and stroma lamellae. The P700 chlorophyll a protein, the reaction center of PSI, was localized on thin sections of barley chloroplasts using monospecific antibodies to this protein and the peroxidase-antiperoxidase procedure. Results obtained by immunocytochemistry were similar to those of the diaminobenzidine oxidation: both grana and stroma lamellae contained immunocytochemically reactive material. Both the grana and stroma lamellae were also labeled when isolated thylakoids were reacted with the P700 chlorophyll a protein antiserum and then processed by the peroxidase-antiperoxidase procedure. PSII activity was localized cytochemically by monitoring the photoreduction of thiocarbamyl nitroblue tetrazolium, a reaction sensitive to the PSII inhibitor, DCMU. PSII reactions occurred primarily on the grana lamellae, with weaker reactions on the stroma lamellae.  相似文献   

3.
4.
Activities of photosystems I and II were compared at a saturating irradiance in air- and 5% CO2-adapted and adapting Chlamydomonas segnis at the active phase of photosynthesis during the cell cycle. PSII activity was 200% greater in air- than in 5% CO2-adapted cells, while PSI activity was similar in both types of cells and matched the level of PSII activity in air-adapted cells. As a result, air- and 5% CO2-adapted cells were characterized by low and high PSI/PSII ratios, respectively. In air-adapted cells, the greater PSII activity (rate of O2 evolved) exceeded that of photosynthetic (Ps) O2 evolution, resulting in a Ps/PSII ratio below unity. This was associated with higher levels of catalase activity, lower l -ascorbate content, and higher dehydro-l -ascorbate content than in 5% CO2-adapted cells. During adaptation to air or 5% CO2 for 6 h in light, PSI rather than PSII was sensitive to changes in the concentration of CO2, and the adapting cells acquired the characteristics of air- and 5% CO2-adapted cells as indicated by PSI/PSII, Ps/PSII, catalase activity, l -ascorbate and dehydro-l -ascorbate contents. The results are discussed in the light of changes in the molecular organization of the thylakoid membranes and enhanced non-cyclic electron transport coupled with O2-uptake (Mehler reaction) for the generation of the ATP required for CO2/HCO?3-transport in air-adapted and adapting cells.  相似文献   

5.
克木毒蛋白三种酶活性与色氨酸残基的关系   总被引:3,自引:0,他引:3  
对一种新的核糖体失活蛋白──克木毒蛋白的研究表明,该分子中仅含一个色氨酸.此色氨酸与克木毒蛋白具有的三种酶活性有明显不同的关系.  相似文献   

6.
Action spectra were obtained for photosystems I and II in chemically fixed algal cells and for photosystem I in unfixed lysozyme treated cells. Untreated algal cells yielded neither of the 2 light reactions with the reaction mixtures used. The action spectra for photosystem I in the blue-green alga Anacystis nidulans and red alga Porphyridium cruentum follow the absorption spectrum of chlorophyll a with a small peak in the region of the accessory pigments. In the green alga Chlorella pyrenoidosa the photosystem I action spectrum follows the absorption spectrum of chlorophyll a. Photosystem II action spectra in A. nidulans and P. cruentum follow the absorption spectra of the accessory pigments while that in C. pyrenoidosa is shifted slightly toward the blue spectral region. These results provide additional evidence that formaldehyde fixed cells are valid models for studying the light reactions of photosynthesis.  相似文献   

7.
W. Yu  P.P. Ho  R.R. Alfano  Michael Seibert 《BBA》1975,387(1):159-164
The fluorescent emission kinetics of spinach subchloroplast Photosystems I and II particles have been studied on a picosecond time scale. Using picosecond laser pulses and an optical Kerr gate, the fluorescent decay times are measured to be 60±10 ps, and 200±20 ps for Photosystems I and II, respectively. The quantum yields are calculated to be 0.004 for Photosystem I and 0.013 for Photosystem II. Theory of exciton energy transfer and trapping is applied for the determination of intermolecular potential energy in the photosystems.  相似文献   

8.
Thylakoid membranes of higher plants and some green algae, which house the light-harvesting and energy transducing functions of the chloroplast, are structurally unique. The concept of the photosynthetic unit of the 1930s (Robert Emerson, William Arnold and Hans Gaffron), needing one reaction center per hundreds of antenna molecules, was modified by the discovery of the Enhancement effect in oxygen evolution in two different wavelengths of light (Robert Emerson and his coworkers) in the late 1950s, followed by the 1960 Z scheme of Robin Hill and Fay Bendall. It was realized that two light reactions and two pigment systems were needed for oxygenic photosynthesis. Changing ideas about the distribution of Photosystem II (PS II) and PS I between the green-appressed and stroma-exposed thylakoid membrane domains, which led to the concept of lateral heterogeneity, are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The effects of nitrogen starvation on photosynthetic efficiency were examined in three unicellular algae by measuring changes in the quantum yield of fluorescence with a pump-and-probe method and thermal efficiency (i.e. the percentage of trapped energy stored photochemically) with a pulsed photoacoustic method together with the inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea to distinguish photosystems I and II (PSI and PSII). Measured at 620 nm, maximum thermal efficiency for both photosystems was 32% for the diatom Thalassiosira weissflogii (PSII:PSI ratio of 2:1), 39% for the green alga Dunaliella tertiolecta (PSII:PSI ratio of 1:1), and 29% for the cyanobacterium Synechococcus sp. PCC 7002 (PSII:PSI ratio of 1:2). Nitrogen starvation decreased total thermal efficiency by 56% for T. weissflogii and by 26% for D. tertiolecta but caused no change in Synechococcus. Decreases in the number of active PSII reaction centers (inferred from changes in variable fluorescence) were larger: 86% (T. weissflogii), 65% (D. tertiolecta), and 65% (Synechococcus). The selective inactivation of PSII under nitrogen starvation was confirmed by independent measurements of active PSII using oxygen flash yields and active PSI using P700 reduction. Relatively high thermal efficiencies were measured in all three species in the presence of the PSII inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, suggesting the potential for significant cyclic electron flow around PSI. Fluorescence or photoacoustic data agreed well; in T. weissflogii, the functional cross-sectional area of PSII at 620 nm was estimated to be the same using both methods (approximately 1.8 x 102 A2). The effects of nitrogen starvation occur mainly in PSII and are well represented by variable fluorescence measurements.  相似文献   

10.
The time of appearance of photochemical activities togetherwith the chlorophyll-protein complexes associated with photosystemsI and II was followed in greening primary leaves of jack bean(Canavalia ensiformis (L.) DC.). When greening of the etiolatedleaves occurred under high relative humidity conditions, nolag phase in chlorophyll-accumulation was observed. These environmentalconditions also promoted rapid and uniform development of thechloroplast lamellar system. Chlorophyll-protein complexes ofthe lamellae were separated by means of sodium dodecylsulphate-polyacrylamidegel electrophoresis and by hydroxylapatite chromatography. Thephotosystem II complex, containing chlorophyll a/b-protein,was detected after 2 h of greening. Its appearance was correlatedwith a sharp decrease in the chlorophyll a/b ratio and withthe onset of oxygen evolution. Subsequently, the photosystemI complex, containing a chlorophyll a-protein, was detected—after6 h of illumination. Its appearance coincided with the detectionof light-induced bleaching of P700 and the beginning of a risingchlorophyll a/b ratio that plateaued some time later.  相似文献   

11.
Immunological cross-reactivity among corresponding proteinsassociated with photosystems I and II in higher plants, greenalgae, red algae and cyanobacteria were examined with antiseraraised against the proteins from Synechococcus elongatus andspinach. (1) Generally, the cross-reactivity was very high betweenclosely related species but decreased with increasing phylogeneticdistances between organisms. Exceptionally, proteins from redalgae showed lower reactivities with the antisera against thecyanobacterial proteins than did corresponding proteins fromgreen algae and higher plants. (2) The extent of the cross-reactivitywas found to vary with the antisera used. Three antisera preparedagainst large chlorophyll-carrying proteins of photosystem Iand photosystem II reaction center complexes of Synechococcusreacted with the corresponding proteins of all the organismsexamined. By contrast, an antiserum raised against the extrinsic35 kDa protein of the cyanobacterium reacted with none of corresponding33 kDa proteins of other species. The antiserum against thespinach 33 kDa protein showed a wider range of cross-reactivity.Antisera raised against the Dl and D2 proteins from spinachwere highly reactive with corresponding proteins from otherphotosynthetic organisms, whereas an antiserum against a well-conservedsequence of the spinach D2 protein showed limited cross-reactivity.The results show that, although the extent of immunologicalcross-reactivity is determined mainly by the homology betweenproteins, caution is indicated in the application of immunologicalmethods to determinations of the distribution of various proteinsrelated to photosystems I and II in very different organisms. (Received December 8, 1989; Accepted March 12, 1990)  相似文献   

12.
Satoh K  Fork DC 《Plant physiology》1982,70(4):1004-1008
Illumination of intact Bryopsis corticulans chloroplasts under anaerobic conditions induced a decline of chlorophyll fluorescence and photoinhibition of Photosystems I and II. The time course of the light-induced decline of chlorophyll fluorescence and the decreases of activities of reactions sensitized by Photosystems I and II were compared. Photosystem I activity decreased in parallel with the disappearance of active P700. The time course of the destruction of the reaction center of Photosystem II was similar to that of photoinhibition of 2,6-dichlorophenolindophenol-Hill reaction.

It appears that the initial events in photoinhibition are the destruction of the reaction centers of Photosystems I and II and that the reaction centers that are inhibited become quenchers of chlorophyll fluorescence.

Effects of inhibitors of electron transfer and of an electron donor to Photosystem I showed that photoinhibition was related to Photosystem I activity.

  相似文献   

13.
Eckhard Loos 《BBA》1976,440(2):314-321
Action spectra were measured for positive changes in variable fluorescence (emission > 665 nm) excited by a beam of 485 nm chopped at 75 Hz. The action of two further beams was compared, one being variable, the other (reference) constant with respect to wavelength and intensity. Comparison was achieved by alternating the reference and the variable wavelength beams at 0.3 Hz and adjusting the intensity of the latter such as to cancel out any 0.3 Hz component in the 75 Hz fluorescence signal. The relative action then was obtained as the reciprocal of the intensity of the variable wavelength beam. Similarly, action spectra were measured for O2 evolution with ferricyanide/p-phenylenediamine as electron acceptor, and for O2 uptake mediated by methyl viologen with ascorbate 3-(p-chlorophenyl)-1,1-dimethylurea as electron donor in the presence of 2,6-dichlorophenolindophenol.Addition of 5 mM MgCl2 increases the relative action around 480 nm for the change in variable fluorescence and p-phenylenediamine-dependent O2 evolution, and decreases it for methyl viologen-mediated O2 uptake with 2,6-dichlorophenolindophenol/ascorbate as electron donor in the presence of 3-(p-chlorophenyl-1,1-dimethylurea. The change in variable fluorescence and O2 evolution are stimulated by MgCl2, whereas O2 uptake is inhibited by it.The results are discussed in terms of a model assuming a tripartite organization. of the photosynthetic pigments (Thornber, J. P. and Highkin, H. R. (1974) Eur. J. Biochem. 41, 109–116; Butler, W. L. and Kitajima, M. (1975) Biochim. Biophys. Acta 396, 72–85). MgCl2 is thought to promote energy transfer to Photosystem II from a light-harvesting pigment complex serving both photosystems.  相似文献   

14.
Veeranjaneyulu  K.  Charland  M.  Leblanc  R.M. 《Photosynthetica》1998,35(2):177-190
High-irradiance (HI) stress induced changes in the photosynthetic energy storage (ES) of photosystems 1 (ESPS1) and 2 (ESPS2) were studied with 650 nm modulated radiation in intact sugar maple (Acer saccharum Marsh.) leaves. HI-treatment (420 W m-2, 1 h) caused an inhibition of about 40 % in ESPS2 and an enhancement of about 60 % in ESPS1. The rate of PS1 cyclic electron transport, measured with 705 nm modulated radiation, also increased in HI-treated leaves. There was a clear state 1- state 2 transition in HI-treated leaves. ESPS1 increased significantly and ESPS2 decreased drastically in leaves preadapted to state 1 after HI (600 W m-2, 30 min) treatment. Thus, the increase in PS1 activity observed immediately after HI-treatment in leaves preadapted to state 1 can be due to the coupling of LHC2 to PS1 during the HI-treatment. Further, the dissociation of LHC2 from PS2 during the HI-treatment resulted in apparently (about 15 %) greater inhibition than the "true" inhibition of PS2 activity. The presence of LHC2 with PS2 (state 1) at the time of HI-treatment caused no additional damage to PS2 or its coupling to PS1 offered no apparent HI-treatment. Further, the dissociation of LHC2 from PS2 during the HI-treatment resulted in apparently (about 15 %) greater inhibition than the "true" inhibition of PS2 activity. The presence of LHC2 with PS2 (state 1) at the time of HI-treatment caused no additional damage to PS2 or its coupling to PS1 offered no apparent protection to the photosynthetic apparatus.  相似文献   

15.
The effect of divalent cations on the primary photoconversion kinetics of chloroplast Photosystems (PS) I and II was investigated by absorbance difference spectrophotometry in the ultraviolet (ΔA320) and red (ΔA700) regions and by fluorescence at room temperature. Three main chlorophyll (Chl) a fluorescence emission components were identified. Addition of 5 mM MgCl2 to unstacked chloroplasts caused a 5–7-fold increase in Fvα, the variable fluorescence yield controlled by the α-centers. The fluorescence yield Fvβ controlled by the β-centers and the nonvariable fluorescence yield F0 were only slightly changed by the treatment. The absolute number of α- and β-centers remained unchanged and independent of divalent cations. The rate constants Kα, Kβ and KP-700 determined from the photoconversion kinetics of Qα, Qβ and P-700 were also unchanged by divalent cations, suggesting a constancy of the respective absorption cross-sections. Evidence is presented that the Mg2+ effect on Chl a fluorescence is not due simply to unstacking. Conclusion: (1) In the absence of divalent cations from the chloroplast suspending medium, the variable fluorescence yield is not complementary to the rate of PS II photochemistry. (2) A spillover of excitation from PS II to PS I in the absence of Mg2+ cannot account for the 7-fold lowering of the variable fluorescence yield Fvα at room temperature. The results are discussed in view of a model of excitation transfer and fluorescence emission in the pigment bed of PS IIα and PS IIβ.  相似文献   

16.
17.
Using photoacoustic spectroscopy, state 1-state 2 transitions were demonstrated in vivo in intact sugar maple leaves (Acer saccharum Marsh.) by following the changes in energy storage of photosystems (PS) I and II. Energy storage measured with 650 nm modulated light (light 2) in the presence of background white light indicated the total energy stored by both photosystems (ESt), and in the presence of background far-red light showed the energy stored by PSI (ESpsi). The difference between ESt and ESpsi gave the energy stored by PSII (ESpsii). While ESt remained nearly constant during state transitions, both ESpsi and ESpsii changed considerably. The ratio of ESpsii to ESpsi, an indicator of the energy distribution between the two photosystems, decreased or increased during transition to state 2 or state 1, respectively. State transitions were completed in about 20 min and were fully reversible. During transition from state 1 to state 2, the fraction of excitation energy gained by PSI was nearly equal to that lost by PSII. This fraction of excitation energy transferred from PSII to PSI accounted for about 5% of the absorbed light (fluorescence is not considered), 19% of ESt, 34% of ESpsii, and 43% of ESpsi in state 2. NaF treatment inhibited the transition to state 1. Data in the present study confirm the concept of changes in absorption cross-section of photosystems during state transitions.  相似文献   

18.
This paper is dealing with the effects of the photoperiodic induction of flowering on the activities of four phosphatases (DNase, RNase, PDase, and 5’-NDase) in Pharbitis nil. According to our experimental results, the patterns of changes of activity in these four phosphatases after short-day induction can be put into two cases. One is the case of DNase, which activities are decreased altar short-day treatment both in cotyledons and apices indicating that floral induction leads to dropping of DNA metabolism level Another is the case of the other three phosphatases with a very similar but quite different characteristic from that of DNase. In cotyledons, activities of the three phosphatases after induction are higher than those in the non-induced group. In apices, activities are also higher just after induction, and then drop gradually while activities in the non-induced group rise sharply so that both the two contrast curves show a form of “X”. These changes are evidently interrelated with RNA metabolic regulation in the apices after floral induction.  相似文献   

19.
Photochemical activity, measured as energy storage of photosystems I (PSI) and II (PSII) together and individually, is studied in sugar maple (Acer saccharum Marsh.) leaves in the spectral range between 400 and 700 nm in state 1 and state 2. Total photochemical activity remains the same in both state 1 and state 2 between 580 and 700 nm, but it is lower in state 2 between 400 and 580 nm. Both PSI and PSII activities change significantly during the state transition due to the migration of light-harvesting chlorophyll a/b protein complex of PSII (LHCII). In the action spectra of PSI and PSII, peak positions vary depending on the association or dissociation of LHCII, except for the peak at 470 nm in the PSII spectrum. PSII activity is about 3 times higher than or equal to PSI in state 1 or state 2, respectively, over most of the spectrum except in the blue and far-red regions. At 470 nm, PSII activity is 8 or 1.6 times higher than PSI in state 1 or state 2, respectively. The amplitude of LHCII coupling-induced change is the same in both PSI and PSII between 580 and 700 nm, but it is less in PSI than in PSII between 400 and 580 nm, which explains the lower photochemical activity of the leaf in state 2 than in state 1. This may be due to a decrease in energy transfer efficiency of carotenoids to chlorophylls in LHCII when it is associated with PSI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号