首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
To examine how amino acid sequences outside of the catalytic domain of pp60c-src influence the functional activity of this protein, we have introduced deletion mutations within the amino-terminal half of pp60c-src. These mutations caused distinct changes in the biochemical properties of the c-src gene products and in the properties of cells infected with retroviruses carrying these mutant c-src genes. Cells expressing the c-srcNX protein, which contains a deletion of amino acids 15 to 89, displayed a refractile, spindle-shaped morphology, formed intermediate-sized, tightly packed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Thus, deletion of amino acids 15 to 89 can activate the kinase activity and transforming potential of the c-src gene product. Deletion of amino acids 112 to 225, however, did not increase the kinase activity or transforming ability of pp60c-src; indeed, deletion of these sequences in c-srcHP suppressed phenotypic alterations induced by pp60c-src. Cells expressing the c-srcNP or c-srcBS gene products (containing deletions of amino acids 15 to 225 and 55 to 169, respectively) displayed a fusiform, refractile morphology and formed diffuse colonies in soft agar; the mutant proteins displayed an increased in vitro protein-tyrosine kinase activity. However, only a few cellular proteins contained elevated levels of phosphotyrosine in vivo. Thus, deletions downstream of amino acid 89 severely restricted the ability of c-src to phosphorylate cellular substrates in vivo without affecting the intrinsic tyrosine kinase activity of the c-src gene product. These results suggest the existence of at least two modulatory regions within the amino-terminal half of pp60c-src that are important for the regulation of tyrosine kinase activity and for the interaction of pp60c-src with cellular substrates.  相似文献   

3.
Enhancing the transglycosylation (TG) activity of glycoside hydrolases does not always result in the production of oligosaccharides with longer chains, because the TG products are often decomposed into shorter oligosaccharides. Here, we investigated the mutation strategies for obtaining chitooligosaccharides with longer chains by means of TG reaction catalyzed by family GH18 chitinase A from Vibrio harveyi (VhChiA). HPLC analysis of the TG products from incubation of chitooligosaccharide substrates, GlcNAcn, with several mutant VhChiAs suggested that mutant W570G (mutation of Trp570 to Gly) and mutant D392N (mutation of Asp392 to Asn) significantly enhanced TG activity, but the TG products were immediately hydrolyzed into shorter GlcNAcn. On the other hand, the TG products obtained from mutants D313A and D313N (mutations of Asp313 to Ala and Asn, respectively) were not further hydrolyzed, leading to the accumulation of oligosaccharides with longer chains. The data obtained from the mutant VhChiAs suggested that mutations of Asp313, the middle aspartic acid residue of the DxDxE catalytic motif, to Ala and Asn are most effective for obtaining chitooligosaccharides with longer chains.  相似文献   

4.
F Faustinella  L C Smith  L Chan 《Biochemistry》1992,31(32):7219-7223
Lipoprotein lipase (LPL), hepatic lipase, and pancreatic lipase show high sequence homology to one another. The crystal structure of pancreatic lipase suggests that it contains a trypsin-like Asp-His-Ser catalytic triad at the active center, which is shielded by a disulfide bridge-bounded surface loop that must be repositioned before the substrate can gain access to the catalytic residues. By sequence alignment, the homologous catalytic triad in LPL corresponds to Asp156-His241-Ser132, absolutely conserved residues, and the homologous surface loop to residues 217-238, a poorly conserved region. To verify these assignments, we expressed in vitro wild-type LPL and mutant LPLs having single amino acid mutations involving residue Asp156 (to His, Ser, Asn, Ala, Glu, or Gly), His241 (to Asn, Ala, Arg, Gln, or Trp), or Ser132 (to Gly, Ala, Thu, or Asp) individually. All 15 mutant LPLs were totally devoid of enzyme activity, while wild-type LPL and other mutant LPLs containing substitutions in other positions were fully active. We further replaced the 22-residue LPL loop which shields the catalytic center either partially (replacing 6 of 22 residues) or completely with the corresponding hepatic lipase loop. The partial loop-replacement chimeric LPL was found to be fully active, and the complete loop-replacement mutant had approximately 60% activity, although the primary sequence of the hepatic lipase loop is quite different. In contrast, replacement with the pancreatic lipase loop completely inactivated the enzyme. Our results are consistent with Asp156-His241-Ser132 being the catalytic triad in lipoprotein lipase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Using site-directed mutagenesis, the ras-related and essential yeast YPT1 gene was changed to generate proteins with amino acid exchanges within conserved regions. Bacterially produced wild-type proteins were used for biochemical studies in vitro and were found to have properties very similar to mammalian ras proteins. Gene replacement allowed the study of physiological consequences of the mutations in yeast cells. Lys21----Met and Asn121----Ile substitutions rendered the protein incapable of binding GTP and caused lethality. Ser17----Gly and Ala65----Thr substitutions slightly changed the protein's apparent binding capacity for either GDP or GTP and altered its intrinsic GTPase activity. These mutations were without effect on cellular growth. The YPTgly17,thr65 mutant protein displayed a significantly altered relative capacity for guanine nucleotide binding but a GTPase activity comparable to the wild-type protein. In contrast to the Ala65----Thr substitution, the double mutant displayed a significantly reduced capacity for autophosphorylation and allowed cells to grow only poorly. Cellular growth was improved when this mutant protein was overproduced.  相似文献   

6.
[Arg14,Lys15]Nociceptin is a very potent for ORL1 receptor, showing a few times stronger binding activity and much more enhanced biological activity than endogenous nociceptin. This synergistic outcome has been suggested to be due to the interaction with the receptor aromatic and/or acidic amino acid residues crucial to receptor activation. In order to identify such receptor residues in the second ORL1 extracellular loop, we prepared a series of recombinant mutant receptors. The mutant receptor Gln205Ala was found to be as active as wild-type ORL1 for both nociceptin and [Arg14,Lys15]nociceptin. In contrast, Asp206Ala and Tyr207Ala exhibited considerably reduced activity for [Arg14,Lys15]nociceptin, exhibiting no synergistic activity enhancement. These results suggest that Asp206 and Tyr207 are directly involved in the interaction with nociceptin-[Arg14,Lys15]. Trp208Ala was found to bind strongly both nociceptin and [Arg14,Lys15]nociceptin, although it elicited no biological activity. All these results indicate that the consecutive amino acid residues Asp206, Tyr207, and Trp208 are critical to the activation of the ORL1 receptor, but not to nociceptin-binding.  相似文献   

7.
8.
The role of residues Asp60, Tyr35 and Glu141 in the pH-dependent activity of xylanase XYL1p from Scytalidium acidophilum was investigated by site-directed mutagenesis. These amino acids are highly conserved among the acidophilic family 11 xylanases and located near the catalytic site. XYL1p and its single mutants D60N, Y35W and E141A and three combined mutants DN/YW, DN/EA and YW/EA were over-expressed in Pichia pastoris and purified. Xylanase activities at different pH’s and temperatures were determined. All mutations increased the pH optimum by 0.5–1.5 pH units. All mutants have lower specific activities except the E141A mutant that exhibited a 50% increase in specific activity at pH 4.0 and had an overall catalytic efficiency higher than the wild-type enzyme. Thermal unfolding experiments show that both the wild-type and E141A mutant proteins have a Tm maximum at pH 3.5, the E141A mutant being slightly less stable than the wild-type enzyme. These mutations confirm the importance of these amino acids in the pH adaptation. Mutant E141A with its enhanced specific activity at pH 4.0 and improved overall catalytic efficiency is of possible interest for biotechnological applications.  相似文献   

9.
Branching enzyme belongs to the alpha-amylase family, which includes enzymes that catalyze hydrolysis or transglycosylation at alpha-(1,4)- or alpha-(1,6)-glucosidic linkages. In the alpha-amylase family, four highly conserved regions are proposed to make up the active site. From amino acid sequence analysis a tyrosine residue is completely conserved in the alpha-amylase family. In Escherichia coli branching enzyme, this residue (Y300) is located prior to the conserved region 1. Site-directed mutagenesis of the Y300 residue in E. coli branching enzyme was used in order to study its possible function in branching enzymes. Replacement of Y300 with Ala, Asp, Leu, Ser, and Trp resulted in mutant enzymes with less than 1% of wild-type activity. A Y300F substitution retained 25% of wild-type activity. Kinetic analysis of Y300F showed no effect on the Km value. The heat stability of Y300F was analyzed, and this was lowered significantly compared to that of the wild-type enzyme. Y300F also showed lower relative activity at elevated temperatures compared to wild-type. Thus, these results show that Tyr residue 300 in E. coli branching enzyme is important for activity and thermostability of the enzyme.  相似文献   

10.
On the basis of three-dimensional information, many amino acid substitutions were introduced in the thermostable neutral protease (NprM) of Bacillus stearothermophilus MK232 by site-directed mutagenesis. When Glu at position 143 (Glu-143), which is one of the proposed active sites, was substituted for by Gln and Asp, the proteolytic activity disappeared. F114A (Phe-114 to Ala), Y110W (Tyr-110 to Trp), and Y211W (Tyr-211 to Trp) mutant enzymes had higher activity (1.3- to 1.6-fold) than the wild-type enzyme. When an autolysis site, Tyr-93, was replaced by Gly and Ser, the remaining activities of those mutant enzymes were higher than that of the wild-type enzyme.  相似文献   

11.
M Kubo  Y Mitsuda  M Takagi    T Imanaka 《Applied microbiology》1992,58(11):3779-3783
On the basis of three-dimensional information, many amino acid substitutions were introduced in the thermostable neutral protease (NprM) of Bacillus stearothermophilus MK232 by site-directed mutagenesis. When Glu at position 143 (Glu-143), which is one of the proposed active sites, was substituted for by Gln and Asp, the proteolytic activity disappeared. F114A (Phe-114 to Ala), Y110W (Tyr-110 to Trp), and Y211W (Tyr-211 to Trp) mutant enzymes had higher activity (1.3- to 1.6-fold) than the wild-type enzyme. When an autolysis site, Tyr-93, was replaced by Gly and Ser, the remaining activities of those mutant enzymes were higher than that of the wild-type enzyme.  相似文献   

12.
Bacterial chitosanases share weak amino acid sequence similarities at certain regions of each enzyme. These regions have been assumed to be important for catalytic activities of the enzyme. To verify this assumption, the functional importance of the conserved region in a novel thermostable chitosanase (TCH-2) from Bacillus coagulans CK108 was investigated. Each of the conserved amino acid residues (Leu64, Glu80, Glu94, Asp98, and Gly108) was changed to aspartate and glutamine or asparagine and glutamate by site-directed mutagenesis, respectively. Kinetic parameters for colloidal chitosan hydrolysis were determined with wild-type and 10 mutant chitosanases. The Leu64 Arg and Leu64 Gln mutations were essentially inactive and kinetic parameters such as V max and k cat were approximately 1/107 of those of the wild-type enzyme. The Asp98 Asn mutation did not affect the K m value significantly, but decreased k cat to 15% of that of wild-type chitosanase. On the other hand, the Asp98 srarr; Glu mutation affected neither K m nor k cat. The observation that approximately 15% of activity remained after the substitution of Asp98 by Asn indicated that the carboxyl side chain of Asp98 is not absolutely required for catalytic activity. These results indicate that the Leu64 residue is directly involved in the catalytic activity of TCH-2.  相似文献   

13.
Summary We report the isolation of LexA mutant proteins with impaired repressor function. These mutant proteins were obtained by transforming a LexA-deficient recA-lacZ indicator strain with a randomly mutagenized plasmid harbouring the lexA gene and subsequent selection on MacConkey-lactose indicator plates. A total of 24 different lexA(Def) missense mutations were identified. All except three mutant proteins are produced in near-normal amounts suggesting that they are fairly resistant to intracellular proteases. All lexA(Def) missense mutations are situated within the first 67 amino acids of the amino-terminal DNA binding domain. The properties of an intragenic deletion mutant suggest that the part of the amino-terminal domain important for DNA recognition or domain folding should extent at least to amino acids 69 or 70. A recent 2D-NMR study (Lamerichs et al. 1989) has identified three a helices in the DNA binding domain of LexA. The relative orientation of two of them (helices 2 and 3) is reminiscent of, but not identical to, the canonical helix-turn-helix motif suggesting nevertheless that helix 3 might be involved in DNA recognition. The distribution of the lexA(Def) missense mutations along the first 67 amino-terminal amino acids indeed shows some clustering within helix 3, since 8 out of the 24 different missense mutations are found in this helix. However one mutation in front of helix 1 and five mutations between amino acids 61 and 67 suggest that elements other than helices 2 and 3 may be important for DNA binding.  相似文献   

14.
Rad30 is a member of the newly discovered UmuC/DinB/Rad30 family of DNA polymerases. The N-terminal regions of these proteins are highly homologous, and they contain five conserved motifs, I to V, while their C-terminal regions are quite divergent. We examined the contributions of the C-terminal and N-terminal regions of Rad30 to its activity and biological function. Although deletion of the last 54 amino acids has no effect on DNA polymerase or thymine-thymine (T-T) dimer bypass activity, this C-terminal deletion-containing protein is unable to perform its biological function in vivo. The presence of a bipartite nuclear targeting sequence within this region suggests that at least one function of this portion of Rad30 is nuclear targeting. To identify the active-site residues of Rad30 important for catalysis, we generated mutations of nine acidic residues that are invariant or highly conserved among Rad30 proteins from different eukaryotic species. Mutations of the Asp30 and Glu39 residues present in motif I and of the Asp155 residue present in motif III to alanine completely inactivated the DNA polymerase and T-T dimer bypass activities, and these mutations did not complement the UV sensitivity of the rad30Delta mutation. Mutation of Glu156 in motif III to alanine confers a large reduction in the efficiency of nucleotide incorporation, whereas the remaining five Rad30 mutant proteins retain wild-type levels of DNA polymerase and T-T dimer bypass activities. From these observations, we suggest a role for the Asp30, Glu39, and Asp155 residues in the binding of two metal ions required for the reaction of the incoming deoxynucleoside 5'-triphosphate with the 3'-hydroxyl in the primer terminus, while Glu156 may participate in nucleotide binding.  相似文献   

15.
Alpha 1,3-fucosyltransferases (FucT) share a conserved amino acid sequence designated the alpha 1,3 FucT motif that has been proposed to be important for nucleotide sugar binding. To evaluate the importance of the amino acids in this motif, each of the alpha 1,3 FucT motif amino acids was replaced with alanine (alanine scanning mutagenesis) in human FucT VI, and the resulting mutant proteins were analyzed for enzyme activity and kinetically characterized in those cases in which the mutant protein had sufficient activity. Two of the mutant proteins were inactive, six had less than 1% of wild-type activity, and four had approximately 10-50% of wild-type enzyme activity. Three of the mutant proteins with significant enzyme activity had substantially larger Km (5 to 15 times) for GDP-fucose than FucT VI wild-type enzyme. The fourth mutant protein with significant enzyme activity (S249A) had a Km at least 10 times larger than wild-type FucT VI for the acceptor substrate, with only a slightly larger (2-3 times) Km for GDP-fucose. Thus mutation of any of the amino acids within the alpha 1,3 FucT motif to Ala affects alpha 1,3-FucT activity, and substitution of Ala for some of the alpha 1,3 FucT motif amino acids results in proteins with altered kinetic constants for both the acceptor and donor substrates. Secondary structure prediction suggests a helix-loop-helix fold for the alpha 1,3 FucT motif, which can be used to rationalize the effects of mutations in terms of 3D structure.  相似文献   

16.
A comparison of the amino acid sequences of the glucosyltransferases (GTFs) of mutans streptococci with those from the alpha-amylase family of enzymes revealed a number of conserved amino acid positions which have been implicated as essential in catalysis. Utilizing a site-directed mutagenesis approach with the GTF-I enzyme of Streptococcus mutans GS-5, we identified three of these conserved amino acid positions, Asp413, Trp491, and His561, as being important in enzymatic activity. Mutagenesis of Asp413 to Thr resulted in a GTF which expressed only about 12% of the wild-type activity. In contrast, mutagenesis of Asp411 did not inhibit enzyme activity. In addition, the D413T mutant was less stable than was the parental enzyme when expressed in Escherichia coli. Moreover, conversion of Trp491 or His561 to either Gly or Ala resulted in enzymes devoid of GTF activity, indicating the essential nature of these two amino acids for activity. Furthermore, mutagenesis of the four Tyr residues present at positions 169 to 172 which are part of a subdomain with homology to the direct repeating sequences present in the glucan-binding domain of the GTFs had little overall effect on enzymatic activity, although the glucan products appeared to be less adhesive. These results are discussed relative to the mechanisms of catalysis proposed for the GTFs and related enzymes.  相似文献   

17.
Glycine 165, which is located near the active site metal, is mostly conserved in aligned amino acid sequences of manganese-containing superoxide dismutase (Mn-SOD) proteins, but is substituted to threonine in most iron-containing SODs (Fe-SODs). Because threonine 165 is located between Trp128 and Trp130, and Trp128 is one of the metal-surrounding aromatic amino acids, the conversion of this amino acid may affect the metal-specific activity of Escherichia coli Mn-SOD. In order to clarify this possibility, we prepared a mutant of E. coli Mn-SOD with the replacement of Gly165 by Thr. The ratio of the specific activities of Mn- to Fe-reconstituted enzyme increased from 0.006 in the wild-type to 0.044 in the mutant SOD; therefore, the metal-specific SOD was converted to a metal-tolerant SOD. The visible absorption spectra of the Fe- and Mn-reconstituted mutant SODs indicated the loss of Mn-SOD character. It was concluded that Gly at position 165 plays a catalytic role in maintaining the integrity of the metal specificity of Mn-SOD.  相似文献   

18.
Plant acid invertases, which are either associated with the cell wall or present in vacuoles, belong to family 32 of glycoside hydrolases (GH32). Homology modeling of bamboo vacuolar invertase Boβfruct3 using Arabidopsis cell-wall invertase AtcwINV1 as a template showed that its overall structure is similar to GH32 enzymes, and that the three highly conserved motifs, NDPNG, RDP and EC, are located in the active site. This study also used site-directed mutagenesis to examine the roles of the conserved amino acid residues in these three motifs, which include Asp135, Arg259, Asp260, Glu316 and Cys317, and a conserved Trp residue (Trp159) that resides between the NDPNG and RDP motifs. The mutants W159F, W159L, E316Q and C317A retained acid invertase activity, but no invertase activity was observed for the mutant E316A or mutants with changes at Asp135, Arg259, or Asp260. The apparent Km values of the four mutants with invertase activity were all higher than that of the wild-type enzyme. The mutants W159L and E316Q exhibited lower kcat values than the wild-type enzyme, but an increase in the kcat value was observed for the mutants W159F and C317A. The results of this study demonstrate that these residues have individual functions in catalyzing sucrose hydrolysis.  相似文献   

19.
General acid catalysis in protein tyrosine phosphatases (PTPases) is accomplished by a conserved Asp residue, which is brought into position for catalysis by movement of a flexible loop that occurs upon binding of substrate. With the PTPase from Yersinia, we have examined the effect on general acid catalysis caused by mutations to two conserved residues that are integral to this conformation change. Residue Trp354 is at a hinge of the loop, and Arg409 forms hydrogen bonding and ionic interactions with the phosphoryl group of substrates. Trp354 was mutated to Phe and to Ala, and residue Arg409 was mutated to Lys and to Ala. The four mutant enzymes were studied using steady state kinetics and heavy-atom isotope effects with the substrate p-nitrophenyl phosphate. The data indicate that mutation of the hinge residue Trp354 to Ala completely disables general acid catalysis. In the Phe mutant, general acid catalysis is partially effective, but the proton is only partially transferred in the transition state, in contrast to the native enzyme where proton transfer to the leaving group is virtually complete. Mutation of Arg409 to Lys has a minimal effect on the K(m), while this parameter is increased 30-fold in the Ala mutant. The k(cat) values for R409K and for R409A are about 4 orders of magnitude lower than that for the native enzyme. General acid catalysis is rendered inoperative by the Lys mutation, but partial proton transfer during catalysis still occurs in the Ala mutant. Structural explanations for the differential effects of these mutations on movement of the flexible loop that enables general acid catalysis are presented.  相似文献   

20.
K Ogasahara  S Sawada  K Yutani 《Proteins》1989,5(3):211-217
CD spectra in the aromatic region of a series of the mutant alpha-subunits of tryptophan synthase from Escherichia coli, substituted at position 49 buried in the interior of the molecule, were measured at pH 7.0 and 25 degrees C. These measurements were taken to gain information on conformational change produced by single amino acid substitutions. The CD spectra of the mutant proteins, substituted by Tyr or Trp residue in place of Glu residue at position 49, showed more intense positive bands due to one additional Tyr or Trp residue at position 49. The CD spectra of other mutant proteins also differed from that of the wild-type protein, despite the fact that the substituted residues at position 49 were not aromatic. Using the spectrum of the wild-type protein (Glu49) as a standard, the spectra of the other mutants were classified into three major groups. For 10 mutant proteins substituted by Ile, Ala, Leu, Met, Val, Cys, Pro, Ser, His, or Gly, their CD values of bands (due to Tyr residues) decreased in comparison with those of the wild-type protein. The mutant protein substituted by Phe also belonged to this group. These substituted amino acid residues are more hydrophobic than the original residue, Glu. In the second group, three mutant proteins were substituted by Lys, Gln, or Asn, and the CD values of tyrosyl bands increased compared to those of the wild-type proteins. These residues are polar. In the third group, the CD values of tyrosyl bands of two mutant proteins substituted by Asp or Thr were similar to those of the wild-type protein, except for one band at 276.5 nm. These results suggested that the changes in the CD spectra for the mutant proteins were affected by the hydrophobicity of the residues at position 49.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号