首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
An enzyme which released invertase from cell ghosts of Candida utilis was isolated in an electrophoretically pure state from “Zymolyase.” The molecular weight of the purified enzyme was estimated to be 5.8 × 104, and its isoelectric point was pH 6.9. The enzyme was stable in a pH range from 6.0 to 9.0, and the optimal pH for liberation of invertase from cell ghosts was around 6.0. The activity of the enzyme was competitively inhibited by glucose, mannose, and sucrose. Unlike the starting enzyme preparation, “Zymolyase,” the purified enzyme released invertase without making holes on the surface of the cell ghosts. Various tests were applied, but the specificity of the enzyme was not defined.  相似文献   

2.
The conditions of promotion of autolysis of three strains of Lactobacilli were investigated. The autolysis of L. acidophilus, L. helveticus and L. casei at exponential phase was remarkably enhanced by freezing storage at ?20°C overnight.

The turbidity decrease of L. acidophilus’ cell suspension corresponds to the increase of cell free nitrogen compounds, glucosamine and DNA component. All these compounds were more rapidly released from the cells stored at ?20°C than those stored at 3°C. The cells which were harvested at the exponential phase had higher autolytic activity than those at stationary phase. The storage of the cells at ?20°C for 2 days or more could effectively promote the autolysis.

The activity was increased by Ca2+ or Mg2+. Optimum pH of the autolytic enzyme of L. acidophilus was 6~7.  相似文献   

3.
Lytic enzymes in the autolysis of filamentous fungi   总被引:4,自引:0,他引:4  
The degrees of autolysis attained by five different genera of filamentous fungi during an incubation period of 60 days, under the same culture conditions were: 87.3% for Penicillium oxalicum; 65.9% for Neurospora crassa; 62.7% for Polystictus versicolor; 51.7% for Aspergillus niger and 23.5% for Nectria galligena. N. crassa, A. niger and P. versicolor reached the end of the autolysis during this incubation period (60 days), whereas P. oxalicum and N. galligena did not.The excretion of the lytic enzymes -N-acetyl-glucosaminidase, -1–3 glucanase, chitinase, invertase and acid phosphatase into the culture medium during growth and autolysis was investigated. The excretion of these enzymes was consistent with the degree of autolysis reached, the maximum excretion belonging to P. oxalicum and the minimum to N. galligena. The N. crassa invertase was excreted into the culture liquid at levels very much higher than the other enzymes studied, and at levels very much higher than the invertases excreted by the other fungi.  相似文献   

4.
Nearly all the amino group-producing activity of the autolysate of cells of Saccharomyces sake was recovered in the cell wall fraction obtained from the autolysis residue. The activity of the cell wall fraction was not lost even after repeated use.

The proteolytic activity of the fraction was not solubilized by incubation with detergents, disruption with cell mill or by freezing and thawing method, but was solubilized to some extent by incubation with a commercial yeast cell-lytic enzyme preparation.

The cell wall fraction hydrolysed casein to about 50%. When casein was previously treated with certain proteinases, more than 60% was digested. The activity of the fraction was significantly increased by the addition of Zn2+ while it was decreased by several proteolytic enzyme inhibitors. The interesting fact was that in the presence of EDTA the cell wall fraction showed only carboxypeptidase-like activity, and attacked the oxidized insulin B-chain to release two amino acids from the carboxyl terminal in known order.  相似文献   

5.
The mycelium of Mucor rouxii reached a 50% degree of lysis after 50 days incubation, and was then stable with the incubation time. The pH of the medium was 4.3 when autolysis began, rising to pH 7.6 after 6 days of autolysis and remaining there for the duration of the experiment. Maximum degradation of mycelium occurs during the first days of autolysis. Glucosamine is present in the culture liquid during all the autolytic process. Enzymes implicated in the degradation of chitosan and chitin were studied in the culture fluid during autolysis. An exochitosanase activity was detected after a day of autolysis, and its activity increased during 20 days of autolysis and afterwards remained constant until the end of the process. An endochitosanase activity was detected in the culture fluid from the beginning of the autolysis, having its maximum activity after 34 days of incubation. Both activities show an optimum pH of 5.5, but the pH range of activity for endochitosanase was broader than for exochitosanase. Both activities were not inhibited by 0.5 mM glucosamine. Activities of the enzymes B-N-acetylglucosaminidase and chitinase were not found. The chitosan content in the cell walls decreased with the incubation time. In these cell walls the chitin content experienced an increase at the beginning of the autolysis, decreasing afterwards. The enzymatic complex obtained from autolyzed cultures of M. rouxii hydrolyzed 2-day-old cell walls of this fungus. The hydrolysis was 21% after 24 h of incubation, liberating glucose and glucosamine. As a consequence protoplasts from M. rouxii germinated spores were obtained with its own lytic enzymes in adequate osmotic conditions. The involvement of chitosanases in the autolysis of this fungus have been studied.  相似文献   

6.
No evidence could be obtained for hormonal control of amylopectin-l,6-glucosidase activity in germinating peas for the first 72 hours of germination. The embryonic axis did not stimulate the appearance of enzyme activity. The autolytic system which releases amylopectin-l,6-glucosidase activity from the particulate fraction, in which it originates, was studied in greater detail. Using Cu2+ ions to inhibit a proteolytic enzyme in vivo, it was shown that enzyme activation can occur in the zymogen-like granules without liberation of the enzyme into the soluble cell fraction. Activity so formed is labile. Some of the data on proteolytic enzymes in peas is discussed and an attempt made to interpret the liberation of amylopectin-l,6-glucosidase in peas on the basis of the involvement of at least two distinct proteolytic enzymes.  相似文献   

7.
Kluyveromyces bulgaricus protoplast formation was studied by the determination of the remaining intact cells with the Coulter counter, the decrease of the absorbance of the cell suspension upon dilution into an hypoosmotic medium and the liberation of intracellular proteins after protoplast lysis. Due to the scattering of light by cells and ghosts, spectrophotometric readings were not enough specific and led to the underestimation of the reaction rates (about 40% less). The Coulter counter technique and the determination of the liberation of intracellular proteins gave the same rates over a large range of cell concentrations and in the presence of various cell lytic enzymes. The importance of corrected etermination of the time course of the reaction was illustrated by the good correlation obtained between protoplast formation and ATP turnover.  相似文献   

8.
Alkaline invertase was induced during the initiation of suspension cultures of single cells from leaf explants of sugar beets in Murashige-Skoog liquid medium which contained benzyladenine. This activity was barely detectable in the leaves themselves. In suspension cultures, the presence of both acid and alkaline invertases was detected; alkaline invertase was only present in the cytoplasm of the cultured cells, whereas acid invertase was present in the cytoplasm and cell walls, and was also detected in the culture medium. The cell wall contained at least three types of acid invertase; two of these activities were solubilized by saline (saline-released) and EDTA (EDTA-released), respectively, and the third remained tightly associated with the cell wall. Saline-released and EDTA-released invertases from the cell wall showed the significant differences in their properties: the saline-released enzyme had the highest affinity for sucrose among the invertases tested, and was easily bound to cell walls, to DNA, and to a cation exchanger, unlike the EDTA-released enzyme. Sucrose is the source of carbon for plant cells in suspension culture and is probably degraded in the cell wall by the saline-released invertase, which had the highest activity and the highest affinity for sucrose. Hexose products of this degradation would be transported to cytoplasm. Soluble invertase, EDTA-released invertase from the cell wall, and one of two extracellular invertases behaved similarly upon chromatography on DEAE-cellulose. They had similar activity profiles with changing pH, and similar Km values for sucrose. Thus it appears that they are identical. Two extracellular invertases found in the growth medium of the suspension cultures were probably identical with those in the soluble fraction of callus and seedlings of sugar beets, because they showed similar behaviors during chromatography on DEAE-cellulose, and had similar activity profiles with changing pH and Km values for sucrose.  相似文献   

9.
When cultured sycamore cells are homogenised in a phosphate-citrate buffer at pH 7.0 and the homogenate centrifuged two fractions are obtained both of which show the presence of an acid (opt. pH 4.0–4.5) and a neutral (opt. pH 7.0–7.4) invertase. The activity of the insoluble pellet appears to be located in its cell wall fragments. The acid and neutral invertases of the soluble fraction can be separated by fractional precipitation with (NH4SO4. The activities of these enzymes are low in stationary phase cells but they increase following subculture to reach peaks of activity towards the end of the period of most active cell growth and division and then decline again as the cells begin to enter stationary phase. The activities of both enzymes are higher in the cell wall than in the soluble fraction and the acid invertase reaches higher levels of activity than the neutral enzyme in both fractions. When cells are subcultured there occurs within a few hours an increase in the acid invertase and a decline in the neutral invertase activity in the cell wall fraction and a decline in the acid invertase of the soluble fraction prior to the large net increases in the activities of both enzymes in both locations which occurs as the cells embark upon cell division. The pattern of changes in the invertase activities through the growth cycle of batch propagated cultures is similar whether the cells are grown in sucrose, or glucose, or sucrose plus glucose; the highest levels of activities were recorded in the glucose-grown cells. The total yield of invertase activities and the distribution of activities between the soluble and cell wall fractions of the homogenates are affected by the pH of the extraction medium (within the range pH 4.0–8.0). It has not proved possible to completely remove the invertases from the cell wall fraction; upwards of 50 % of the acid invertase was recovered from this fraction by treatment with Triton-X followed by urea, but these treatments inactivated a high proportion of the neutral enzyme. These findings are compared with other studies on the activity and intra-cellular distribution of plant invertases and the possible roles of these enzymes discussed.  相似文献   

10.
Yeast Saccharomyces cerevisiae is the most significant source of enzyme invertase. It is mainly used in the food industry as a soluble or immobilized enzyme. The greatest amount of invertase is located in the periplasmic space in yeast. In this work, it was isolated into two forms of enzyme from yeast S. cerevisiae cell, soluble and cell wall invertase (CWI). Both forms of enzyme showed same temperature optimum (60°C), similar pH optimum, and kinetic parameters. The significant difference between these biocatalysts was observed in their thermal stability, stability in urea and methanol solution. At 60°C, CWI had 1.7 times longer half-life than soluble enzyme, while at 70°C CWI showed 8.7 times longer half-life than soluble enzyme. After 2-hr of incubation in 8?M urea solution, soluble invertase and CWI retained 10 and 60% of its initial activity, respectively. During 22?hr of incubation of both enzymes in 30 and 40% methanol, soluble invertase was completely inactivated, while CWI changed its activity within the experimental error. Therefore, soluble invertase and CWI have not shown any substantial difference, but CWI showed better thermal stability and stability in some of the typical protein-denaturing agents.  相似文献   

11.
In culture, the ectomycorrhiza-forming fungi Amanita muscaria (Pers. ex Fries) Hock. and Hebeloma crustuliniforme (Bull. ex Fries) Quel. only grow on media with glucose or fructose but not with sucrose as sole carbohydrate source. This is due to their lack of wall-bound invertase activity. Therefore, utilization of sucrose by the fungi within a mycorrhizal association is believed to depend on the wall-bound invertase activity of the host. This enzyme activity was studied in the apoplast of suspension cultured cells of Picea abies (L.) Karst. An ionically and a tightly wall-bound isoform of acid invertase were found that function as β-d -fructofuranoside-fructohydrolases (EC 3.2.1.26). The ionically bound enzyme could be easily released from walls of intact cells with buffer of high ionic strength. In its native form, the ionically bound invertase isoform is a monomeric protein with a molecular mass of 61 kDa, as determined by gel filtration and SDS-PAGE. Glycoprotein nature of the enzyme was demonstrated with antibodies directed against the digoxigenin-labeled protein. The Km values of both enzymes for sucrose, their natural substrate, are relatively high (ionically bound invertase Km= 16 mM, tightly bound invertase Km= 8.6 mM). Activity of both wall-bound invertase isoforms strongly depends on the apoplastic pH. They have a narrow pH-optimum and exhibit highest activity at pH 4.5. with elevated activity between pH 4.5 and 6.0. Furthermore, fructose acts as competitive inhibitor of both isoforms, whereas glucose is not inhibitory. Unloading of sucrose from host cells to the apoplastic interface of the Hartig net in ectomycorrhizae appears to depend on the rate of hydrolysis by the wall-bound invertase of the host. Since the activity of the plant invertase depends on the actual pH value and the fructose concentration in the mycorrhizal interface, we suggest that the fungus can actively influence the activity of the plant invertase by acidification of the cell wall and by fructose uptake. Thus, the fungus itself can regulate its own supply of glucose and fructose.  相似文献   

12.
Changes in the activity of -N-acetylglucosaminidase, chitinase, invertase, esterases, glucanases and phosphatases liberated into the culture fluid were followed during the autolytic phase of growth of Aspergillus niger on media with various initial levels of the carbon source. The general pattern was of an accumulation of these lytic enzymes in the culture fluid during autolysis, but some enzymes reached maximum activity and then declined. The initial level of the carbon source affected the enzyme pattern during autolysis. Maximum activity for the various enzymes was always observed either for the lowest initial level of carbon or the highest (3.5 mM glucose, 111 mM glucose). The highest specific activities were those for exopolygalacturonidase (500 mU/mg at 3.45 mM glucose), and for -amylase (about 500 mU/mg at 3.45 mM glucose). Cellulase, chitinase and esterase showed the weakest activity. Acid phosphatase was most active (about 200 mU/mg) at 3.45 mM initial glucose, whereas alkaline phosphatase was most active (45 mU/mg) at 111 mM glucose, both during the autolytic phase of growth.  相似文献   

13.
The role of apoplastic invertase (β-d -fructofuranoside — fructohydrolase, EC 3.2.1.26) of the host Picea abies for carbohydrate uptake and growth of two of its natural ectomycorrhiza partners was studied. For that purpose, hyphae of Amanita muscaria (Pers. ex Fries) Hock. and Hebeloma crustuliniforme (Bull. ex Fries) Quell., as well as roots and suspension cultured cells of Picea abies (L.) Karst. were used. Apoplastic invertase activity was demonstrated on roots and suspension cultured cells of spruce (in the latter case with 21.7 nkat (g fresh weight)?1). Inhibition of the root cell wall invertase activity (pH optimum 4.5) by increasing the apoplastic pH allowed determination of the permanent release of sucrose from the root. However, under in vivo conditions at a lower cell wall pH the hydrolysation products glucose and fructose were predominantly found. In contrast to spruce cells and certain fungi, such as Saccharomyces (Novick et al., 1981) or Phycomyces (Ruiz-Herrera et al., 1989) invertase activity of the mycorrhizal fungi Hebeloma and Amanita was negligibly low. Furthermore, sucrose could not be consumed by Amanita and Hebeloma. As a consequence, cultures of these mycorrhizal fungi starved when kept on media with sucrose as sole carbohydrate source. But addition of invertase initiated hyphal growth immediately. Studies on carbohydrate uptake of host and fungal cells confirmed that the monosaccharides glucose and fructose were readily incorporated by spruce and fungal cells, with a clear preference for glucose. From these results it is suggested that apoplastic invertase activity of the host Picea abies is a precondition for the utilization of sucrose by the studied mycorrhizal fungi during the nutritional interaction of the symbiotic partners.  相似文献   

14.
Summary Elicitors of the ectomycorrhizal fungus Hebeloma crustuliniforme and auxins (IAA, NAA and 2,4-D) were tested for their effects on apoplastic proteins and enzymes of suspension cultured cells of Picea abies (L.) Karst. The ectomycorrhizal elicitor increased the amount of some ionically wall-bound proteins (36, 28, 24, 21 kDa) and decreased the amount of others (61, 22 kDa). The elicitor triggered an H2O2 burst and enhanced the peroxidase (EC 1.11.1.7) activity of the Picea cells by increasing one of the two wall-bound peroxidase isoforms. Auxins significantly suppressed the elicitor induction of peroxidase but did not influence the elicitor-triggered H2O2 burst. The elicitors and auxin did not change the amount and the pattern of wall-bound invertase isoforms (EC 3.2.1.26) of spruce cells. However, auxin reduced the uptake of glucose by spruce cells and increased the acidification of the cell culture medium. Since Hebeloma lacks apoplastic invertase as well as a sucrose uptake system, utilization of plant-derived sucrose depends on the apoplastic plant invertase activity. Although the host invertase is constitutive, the fungus might be able to increase this invertase activity within a mycorrhiza by lowering the pH of the interface towards the pH optimum of the enzyme via the action of auxin. This fungus-released hormone could increase the H+ extrusion of plant cells by activation of the plant membrane H+-ATPases. Additionally, an auxin-dependent suppression of glucose uptake by cortical root cells could improve the glucose supply for the fungus. Furthermore, the fungal auxin might suppress the elicitor induced formation of defense enzymes, such as peroxidase.  相似文献   

15.
Pisum sativum L. (cv. Lincoln) epicotyl cell walls show autohydrolysis and release into the incubation medium up to 120 μg of sugar per mg of cell wall dry weight in 30 h. Cell walls from younger epicotyls with high growth capacity showed higher auto-lytic capacity than older epicotyls. This suggests that both processes, growth and au-tolysis, are related. The proteins responsible for autolysis were extracted from the wall fraction with high saline solution (3 M LiCl) and enzymatic activities associated with the proteins were studied. The highest activity corresponded to α-galactosidase; lower activities were found for β-galactosidase, a-arabinosidase and exoglucanase. Changes in enzymatic activities and changes in the proportion of sugars released in autolysis by cell walls during the growth of epicotyls support the notion that α-galac-tosidase is one of the enzymes involved in the process of autolysis, and that the liberation of arabinose and galactose in this process occurs as arabinogalactan.  相似文献   

16.
Phosphatases; origin,characteristics and function in lakes   总被引:18,自引:4,他引:14  
Phosphatases catalyze the liberation of orthophosphate from organic phosphorus compounds. The total phosphatase activity in lake water results from a mixture of phosphatases localized on the cell surfaces of algae and bacteria and from dissolved enzymes supplied by autolysis or excretion from algae, bacteria and zooplankton. External lake water phosphatases usually have pH optima in the alkaline region. Acid phosphatases generally seem to be active in the internal cell metabolism. The synthesis of external alkaline phosphatases is often repressed at high phosphate concentrations and derepressed at low phosphate concentrations. Phosphatase activity has therefore been used as a phosphorus deficiency indicator in algae and in natural plankton populations. The possibilities for this interpretation of phosphatase activity in lake water are limited, however, and this is discussed. The in situ hydrolysis capacity, i.e. the rate by which orthophosphate is released from natural substrates, is unknown. However, we advocate that this process is important and that the rate of substrate supply, rather than phosphatase activity, limits the enzymatic phosphate regeneration.  相似文献   

17.
Both acid and alkaline invertases were present in immature juice sacs of satsuma mandarin (Citrus‘Unshu Marcovitch”) fruit, in which sugar content was low. Maturing and mature juice sacs, in which sugar content increased steadily with time, were characterized by the presence of alkaline invertase and the absence of acid invertase. When the immature juice sacs were homogenized with 0.2 M sodium phosphate-citrate buffer (pH 8.0), almost all of the acid invertase activity was found in the solubilized fraction, whereas almost all of the alkaline invertase activity was present in the insoluble fraction. The distribution of alkaline invertase between the solubilized and insoluble fractions changed with the development of fruit. The acid invertase had a molecular weight of 69,000, optimum pH of 4.8–5.3, and Km value for sucrose of 7.3 mM. The alkaline invertase had a molecular weight of 200,000, pH optimum of 7.2–7.7, and Km value of 35.7 mM. The hydrolysing activities of both enzymes for raffinose were considerably less than those for sucrose. The alkaline invertase had lower activity for raffinose than the acid invertase.  相似文献   

18.
Abstract

Invertases are used for several purposes; one among these is the production of fructooligosaccharides. The aim of this study was to biochemically characterize invertase from industrial Saccharomyces cerevisiae CAT-1 and Rhodotorula mucilaginosa isolated from Cerrado soil. The optimum pH and temperature were 4.0 and 70?°C for Rhodotorula mucilaginosa invertase and 4.5 and 50?°C for Saccharomyces cerevisiae invertase. The pH and thermal stability from 3.0 to 10.5 and 75?°C for R. mucilaginosa invertase, respectively. The pH and thermal stability for S. cerevisiae CAT-1 invertase from 3.0 to 7.0, and 50?°C, respectively. Both enzymes showed good catalytic activity with 10% of ethanol in reaction mixture. The hydrolysis by invertases occurs predominantly when sucrose concentrations are ≤5%. On the other hand, the increase in the concentration of sucrose to levels above 10% results in the highest transferase activity, reaching about 13.3?g/L of nystose by S. cerevisiae invertase and 12.6?g/L by R. mucilaginosa invertase. The results demonstrate the high structural stability of the enzyme produced by R. mucilaginosa, which is an extremely interesting feature that would enable the application of this enzyme in industrial processes.  相似文献   

19.
Lysophosphatidylcholine (LPC) was found to cause autolysis of Bacillus subtilis 168 cells growing logarithmically at concentrations higher than 20 m, by inducing the activity of autolytic enzymes. The lytic activity depended upon the carbon-chain length of the acyl moiety in the LPC molecule, being most effective with palmitoyl LPC. Lysophosphatidylethanolamine also caused cell lysis but to a lesser extent, whereas lysophosphatidylglycerol did not. LPC stimulated cell autolysis in TRIS-KCl buffer and potassium phosphate buffer but was ineffective in distilled water. LPC had no influence on the activity in vitro of partially purified autolytic enzymes.Correspondence to: T. Tsuchido  相似文献   

20.
Invertase liberation from Saccharomyces cerevisiae was detected after application of series of rectangular millisecond electric pulses. Maximal yield (60% from the activity in crude extract) was achieved within 8 h after pulsation. As shown by staining SDS-PAGE for invertase activity, the main part of liberated enzyme is a high molecular weight periplasmic invertase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号