首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other products of biotransformations by AAB or their enzymes include 2-keto-L-gulonic acid, which is used for the production of vitamin C; D-tagatose, which is used as a bulking agent in food and a noncalorific sweetener; and shikimate, which is a key intermediate for a large number of antibiotics. Recently, for the first time, a pathogenic acetic acid bacterium was described, representing the newest and tenth genus of AAB.  相似文献   

2.
Vitamin requirements for the growth of the acetic acid bacteria were investigated extensively on a. taxonomical viewpoint and the following new findings were pointed out. Neither Acetobacter nor Intermediate strain required vitamin for the growth.

Gluconobacter required generally pantothenic acid. And some strains belonging to it did moreover somewhat of thiamine, nicotinic acid and p-aminobenzoic acid, although there was a difference of requirements between strains even in the same species. Riboflavin, pyridoxine, vitamin B12, folic acid, biotin and inositol were unnecessary for the growth of the acetic acid bacteria. A taxonomical division of the acetic acid bacteria based on the vitamin requirements agreed well with that on basis of the oxidative activities for carbohydrates.  相似文献   

3.
A general review of the acetic acid bacteria belonging to the intermediate type was accomplished physiologically, biochemically and morphologically. Conclusively, it was clarified that these were clearly a specific group and different from both Acetobacter and Gluconobacter, These were intermediate between lactaphilic and glycophilic, besides, on the carbohydrate oxidizability, these were intermediate between Acetobacter and Gluconobacter as mentioned previously.1) These showed the same result as Acetobacter on the vitamin requirement for the growth, but were closely related to Gluconobacter on the carbohydrate availability. And on the oxidative activity for amino acid, accompanying the deamination, these were also clearly distinguished from both Acetobacter and Gluconobacter, particularly these oxidized strongly l-serine. Differing from the observations by other investigators, these showed single flagellation, with the exception of multi-polar, but never multi-peritrichous.  相似文献   

4.
Industrial vinegar production by submerged acetic acid fermentation has been carried out using Acetobacter strains at about 30°C. To obtain strains suitable for acetic acid fermentation at higher temperature, about 1,100 strains of acetic acid bacteria were isolated from vinegar mash, soils in vinegar factories and fruits, and their activities to oxidize ethanol at high temperature were examined. One of these strains, No. 1023, identified as Acetobacter aceti, retained full activity to produce acetic acid in continuous submerged culture at 35°C and produced 45% of activity at 38°C, while the usual strain of A. aceti completely lost its activity at 35°C. Thus the use of this strain may reduce the cooling costs of industrial vinegar production.  相似文献   

5.
We sought optimum culture conditions for the production by Pseudomonas chlororaphis B23 of nitrile hydratase activity. Addition of ferric and ferrous ions and the use of methacrylamide as an inducer greatly enhanced nitrile hydratase formation. When P. chlororaphis B23 was cultivated for 26 hr at 25°C in a medium consisting of 1 g of sucrose, 0.5 g of methacrylamide, 0.2 g of l-cysteine, 0.2 g of l-glutamate (Na), 0.2g of l-proline, 50 mg of KH2PO4, 50 mg of K2HPO4, 50 mg of MgSO4·7H20, and 1 mg of FeSO4·7H20 per 100 ml of tap water with the pH controlled at pH 7.5 to 7.8, the enzyme activity in the culture broth was 900-times that previously reported.  相似文献   

6.
7.
Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called “oxidative fermentations”, especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.  相似文献   

8.
醋酸菌多相分类研究进展   总被引:2,自引:0,他引:2  
醋酸菌是一大群革兰氏染色阴性、绝对好氧的细菌的总称, 能将乙醇或糖类不完全氧化为有机酸。醋酸菌的分类在近30年经历了很大变化, 早期的分类系统主要以表型和生化特征为基础。如今, 大多采用结合表型、化学分类法和基因型数据的多相分类法对醋酸菌进行分类。本文综述了醋酸菌的多相分类研究进展, 主要介绍了醋酸菌的现行分类情况及表型分类、化学分类和基因分型等方法在醋酸菌分类中的应用。  相似文献   

9.
Acetic acid bacteria were present at all stages of wine making, from the mature grape through vinification to conservation. A succession of Gluconobacter oxydans, Acetobacter pasteurianus, and Acetobacter aceti during the course of these stages was noted. Low levels of A. aceti remained in the wine; they exhibited rapid proliferation on short exposure of the wine to air and caused significant increases in the concentration of acetic acid. Higher temperature of wine storage and higher wine pH favored the development and metabolism of these species.  相似文献   

10.
A decrease in citric acid and increases in acetic acid, acetoin and diacetyl were found in the test red wine after inoculation of intact cells of Leuconostoc mesenteroides subsp. lactosum ATCC 27307. a malo-lactic bacterium, grown on the malate plus citrate-medium. Citric acid in the buffer solution was transformed to acetic acid, acetoin and diacetyl in the pH range of 2 to 6 after inoculation with intact cells of this bacterial species. It was concluded that citric acid in wine making involving malolactic fermentation, at first, was converted by citrate lyase to acetic and oxaloacetic acids, and the latter was successively transformed by decarboxylation to pyruvic acid which was subsequently converted to acetoin, diacetyl and acetic acid.

Both the activities of citrate lyase and acetoin formation from pyruvic acid in the dialyzed cell-free extract were optimal at pH 6.0. Divalent cations such as Mn2+, Mg2+, Co2+ and Zn2+ activated the citrate lyase. The citrate lyase was completely inhibited by EDTA, Hg2+ and Ag2+ . The acetoin formation from pyruvic acid was significantly stimulated by thiamine pyrophosphate and CoCl2, and inhibited by oxaloacetic acid. Specific activities of the citrate lyase and acetoin formation were considerably variable among the six strains of malo-lactic bacteria examined. Some activities of irreversible reduction of diacetyl to acetoin were found in the cell-free extracts of four of the malo-lactic bacteria strains and the optimal pH was 6.0 for this activity of Leu. mesenteroides.  相似文献   

11.
Acetoin in vinegar is an attractant to fruit flies when combined with acetic acid. To make vinegar more effective in attracting fruit flies with increased acetoin production, Komagataeibacter europaeus KGMA0119 was modified by specific gene disruption of the acetohydroxyacid isomeroreductase gene (ilvC). A previously constructed mutant lacking the putative ligand-sensing region in the leucine-responsive regulatory protein (KeLrp, encoded by Kelrp) was also used. The ilvC and Kelrp disruptants (KGMA5511 and KGMA7203, respectively) produced greater amounts of acetoin (KGMA5511, 0.11%; KGMA7203, 0.13%) than the wild-type strain KGMA0119 (0.069%). KGMA7203 produced a trace amount of isobutyric acid (0.007%), but the other strains did not. These strains produced approximately equal amounts of acetic acid (0.7%). The efficiency of fruit fly attraction was investigated with cultured Drosophila melanogaster. D. melanogaster flies (approximately 1,500) were released inside a cage (2.5 m by 2.5 m by 1.5 m) and were trapped with a device containing vinegar and a sticky sheet. The flies trapped on the sticky sheet were counted. The cell-free supernatant from KGMA7203 culture captured significantly more flies (19.36 to 36.96% of released flies) than did KGMA0119 (3.25 to 11.40%) and KGMA5511 (6.87 to 21.50%) cultures. Contrastingly, a 0.7% acetic acid solution containing acetoin (0.13%) and isobutyric acid (0.007%), which mimicked the KGMA7203 supernatant, captured significantly fewer flies (0.88 to 4.57%). Furthermore, the KGMA0119 supernatant with additional acetoin (0.13%) and isobutyric acid (0.007%) captured slightly more flies than the original KGMA0119 supernatant but fewer than the KGMA7203 supernatant, suggesting that the synergistic effects of acetic acid, acetoin, isobutyric acid, and unidentified metabolites achieved the efficient fly trapping of the KGMA7203 supernatant.  相似文献   

12.
The ecology of the acetic acid bacteria has been studied at various stages of their association with cider manufacture. Of the 278 strains of bacteria isolated during the survey, 255 proved to be representative of 6 species of acetic acid bacteria. The remaining 23 strains included one example of the spoilage organism, Zymomonas anaerobia , but they were mostly ubiquitous soil bacteria which could not survive the low pH of apple juice and were only found associated with the early stages of cider making. The acetic acid bacteria were isolated in a sequential type of pattern. Those species which preferentially oxidize sugars were found at the early stages of processing when sugars abound, but these were replaced by the relatively more acid-tolerant species, which are better equipped to oxidize alcohols, after the yeast fermentation had converted most of the sugar to ethanol.  相似文献   

13.
The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as “Weissella ghanaensis,” was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named “Acetobacter senegalensis” (A. tropicalis-like) and “Acetobacter ghanaensis” (A. syzygii-like).  相似文献   

14.
Bacterial strains were isolated from samples of Japanese rice vinegar (komesu) and unpolished rice vinegar (kurosu) fermented by the traditional static method. Fermentations have never been inoculated with a pure culture since they were started in 1907. A total of 178 isolates were divided into groups A and B on the basis of enterobacterial repetitive intergenic consensus-PCR and random amplified polymorphic DNA fingerprinting analyses. The 16S ribosomal DNA sequences of strains belonging to each group showed similarities of more than 99% with Acetobacter pasteurianus. Group A strains overwhelmingly dominated all stages of fermentation of both types of vinegar. Our results indicate that appropriate strains of acetic acid bacteria have spontaneously established almost pure cultures during nearly a century of komesu and kurosu fermentation.  相似文献   

15.
Summary Three laboratory-scale water pipe systems were set up to study the effects of adding two levels of acetic acid (10 and 50 μg acetate eq-C l−1) on the bacterial regrowth in water pipes. The results of the water pipe test showed that nearly all carbon in the acetic acid could be readily utilized by bacteria and resulted in an increase in biomass concentration. The maximum heterotrophic plate counts in biofilm were equal to 3.5 × 104, 8.9 × 105 and 2.9 × 107 c.f.u. cm−2 while the maximum heterotrophic plate counts of free bacteria were equal to 1.2 × 103, 5.0 × 103 and 6.8 × 104 c.f.u. ml−1 for the blank and with addition of 10 and 50 μg acetate eq-C l−1. These results showed that addition of acetic acid to drinking water has a positive effect on the assimilable organic carbon content of drinking water and bacterial regrowth in the distribution system. This effect is enhanced with addition of high-level acetic acid. Batch tests were also conducted using water samples collected from a Taiwanese drinking water distribution system. The bacterial regrowth potentials of the blank were equal to 4.3 × 103, 1.5 × 104, 4.9 × 104 and 7.5 × 104 c.f.u. ml−1 for water samples collected from treatment plant effluent, commercial area, mixed area, and residential area, respectively. These results showed that the biological stability of drinking water is the highest in treatment plant effluent, followed by distributed water of the commercial area, distributed water of the mixed area, and then the distributed water of residential area.  相似文献   

16.
A new enzymatic method for microdetermination of ethanol has been established with particulate alcohol dehydrogenase from acetic acid bacteria and applied to the practical purposes. The enzyme had an optimum pH for ethanol oxidation at a fairly acidic region. Trace amounts of ethanol could be assayed by measuring the initial reaction rate as successful as by reading the end point of the reaction. Some advantages in using this enzyme for ethanol determination were pointed out comparing with NAD-linked alcohol dehydrogenase from yeast or horse liver. Impurity in the enzyme preparations, stability of reagents and coexistence of other substances in the assay mixture were not as critical as in NAD-linked enzyme. Acidic samples could also be directly determined for ethanol without preadjustment of sample pH.  相似文献   

17.
The application of a selected Acetobacter pasteurianus strain for traditional balsamic vinegar production was assessed. Genomic DNA was extracted from biofilms after enrichment cultures on GYC medium (10% glucose, 1.0% yeast extract, 2.0% calcium carbonate) and used for PCR/denaturing gradient gel electrophoresis, 16S rRNA gene sequencing, and enterobacterial repetitive intergenic consensus/PCR sequencing. Results suggested that double-culture fermentation is suitable for traditional balsamic vinegar acetification.The use of selected starter cultures (SSC) in fermented food production is widely applied throughout the food industry, in particular for wine, dairy products, sausages, and a variety of vegetables (3, 11). The advantages of their use are related to the improvement of the process control, hygiene, and quality with respect to fermented foods obtained through indigenous fermentation. Vinegar is one of the fermented beverages produced without SSC inoculation, in both small- and large-scale production, mainly for the following reasons: (i) the majority of vinegars have low commercial value, and often technological innovation is not considered profitable, and (ii) there is limited knowledge of the ecophysiology of acetic acid bacteria (AAB) due to the difficulty in accessing, sampling, isolating, and preserving strains (2, 12, 15, 16, 17). Among vinegars, traditional balsamic vinegar (TBV) is an Italian aged condiment produced by “seed vinegar,” the so-called “mother of vinegar” that is an indigenous starter culture withdrawn from acetifying vinegar through back-slopping procedures. The raw material is a fermented and cooked grape must (here indicated as must) at a soluble solids content ranging from 20 to 60°Bx (10). TBV production is regulated by denomination of protected origin guidelines that specify procedures and final product features. In particular, the raw material characteristics, the production process (e.g., must cooking, alcoholic fermentation, acetic oxidation, and ageing), features of the production area (no environmental condition management is permitted), and analytical and sensorial parameters are stated as follows: acidity (not less than 4.5% [wt/wt], expressed as grams of acetic acid per 100 g of product), density at 20°C (not less than 1.240 g per liter), color, aroma, and taste. The production is performed in wood barrels, and the process is carried out by sequential refilling to acetify the must and replace the volume lost by evaporation. AAB grow on the surface of liquid by biofilm formation. No addition of any substance can be made except for the acetifying must as a starter (7). Microbial studies of TBV reported culture-dependent and -independent approaches to evaluating AAB occurrence in TBV musts (5, 10). These studies highlighted the occurrence of Gluconacetobacter europaeus as a widespread indigenous species, as well as Acetobacter pasteurianus, Acetobacter aceti, and Acetobacter malorum. However, no comprehensive studies of AAB diversity and the correlation between species occurrence and technological steps of TBV production have been published, due mainly to the difficulty of easy access to AAB microflora in vinegar matrix by both culture-dependent and -independent approaches.Regarding production technology, at least one drawback of current production procedures has been acknowledged. It concerns the difficulty of start-up acetification, which affects the minimum acidity value required for the final product. In fact, some studies showed that many variables regulate AAB growth and activity. Above all is the sugar concentration among substrates and the temperature among physical parameters. To efficiently control the acetification start-up, it is necessary to understand the function of AAB responsible for the initial colonization of musts and to investigate the microbial succession suitable to complete the acetification. Our previous researches on TBV showed that AAB strains exhibit different growing abilities. In particular, strains of Acetobacter pasteurianus grow quickly on laboratory synthetic media, wine, and cooked must. In contrast, strains belonging to G. europaeus do not grow or grow very slowly on cooked and fermented must (9, 10).The goal of this study was to implement a laboratory SSC to test it on a factory scale for TBV production purposes. In particular, we focused our attention on the effect of A. pasteurianus strain AB0220 on the acetification and dynamics of species at the end of the process. The SSC effectiveness was assessed by monitoring analytical parameters (acetic acid, ethanol, and pH), species succession, and strain persistence during three stages by the following molecular analyses: PCR/denaturing gradient gel electrophoresis (DGGE), 16S rRNA gene sequencing, and enterobacterial repetitive intergenic consensus (ERIC)/PCR sequencing using genomic DNA extracted from biofilms recovered on GYC (10% glucose, 1.0% yeast extract, 2.0% calcium carbonate) plates.  相似文献   

18.
The distribution of two particulate enzymes, gluconate dehydrogenase (GDH) and 2-ketogluconate dehydrogenase (2KGDH), was investigated with cell free extract through 26 strains of genus Acetobacter and genus Gluconobacter. GDH activity was found in the cell free extracts from all strains of genus Gluconobacter and two species of genus Acetobacter, A. aceti and A. aurantium. High activity of 2KGDH was also found in the pigment-producing strains of genus Gluconobacter.

Best solubilization of particulate enzymes was attained with the highest recovery when 10 mg of Triton X–100 and 30 mg of protein of particulate fractions in 1 ml of 0.01 m phosphate buffer, pH 6.0, are incubated for 9 hr at 5°C with continuous stirring.

By comparison of the total enzyme activity of particulate enzymes with that of NAD(P)-linked enzymes in the cell free extract, it was obvious that the formation of ketogluconates by particulate enzymes was much more predominant, roughly over 100 times higher, as that of NAD(P)-linked enzymes.  相似文献   

19.
Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present.  相似文献   

20.
We administered Acetobacter malorum NCI1683 (S24), containing a high concentration of dihydroceramide (7.2 mg/g of dry cell weight), consecutively to aged rats (male Crlj:Wistar rats, 22 months old). The ingestion of Acetobacter malorum for 89 d significantly extended the memory retention in passive avoidance tests, increased the release of acetylcholine with depolarization of brain synaptosomes and decreased the causative agents of neurodegenerative diseases in the cerebral cortices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号