首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synechococcus R-2 (PCC 1942) actively accumulates sulphate in the light and dark. Intracellular sulphate was 1.35 ± 0.23 mol m?3 (light) and 0.894 ± 0.152 mol m?3 (dark) under control conditions (BG-11 media: pHo, 7.5; [SO42?]o, 0.304 mol m?3). The sulphate transporter is different from that found in higher plants: it appears to be an ATP-driven pump transporting one SO42?/ATP [ΔμSO42?i,o=+ 27.7 ± 0.24 kJ mol?1 (light) and + 24 ± 0.34 kj mol?1 (dark)]. The rate of metabolism of SO42?at pHo, 7.5 was 150 ± 28 pmol m?2 s?1 (n = 185) in the light but only 12.8 ± 3.6 pmol m?2 s?1 (n = 61) in the dark. Light-driven sulphate uptake is partially inhibited by DCMU and chloramphenicol. Sulphate uptake is not linked to potassium, proton, sodium or chloride transport. The alga has a constitutive over-capacity for sulphate uptake [light (n= 105): Km= 0.3 ± 0.1 mmol m?3, Vmax, = 1.8 ± 0.6 nmol m?2 s?1; dark (n= 56): Km= 1.4 ± 0.4 mmol m?3, Vmax= 41 ± 22 pmol m?2 s?1]. Sulphite (SO32?) was a competitive inhibitor of sulphate uptake. Selenate (SeO42?) was an uncompetitive inhibitor.  相似文献   

2.
As part of an overall project to characterize the streptomycin phosphotransferase enzyme APH(6)-Id, which confers bacterial resistance to streptomycin, we cloned, expressed, purified, and characterized the enzyme. When expressed in Escherichia coli, the recombinant enzyme increased by up to 70-fold the minimum inhibitory concentration needed to inhibit cell growth. Size-exclusion chromatography gave a molecular mass of 31.4 ± 1.3 kDa for the enzyme, showing that it functions as a monomer. Activity was assayed using three methods: (1) an HPLC-based method that measures the consumption of streptomycin over time; (2) a spectrophotometric method that utilizes a coupled assay; and (3) a radioenzymatic method that detects production of 32P-labeled streptomycin phosphate. Altogether, the three methods demonstrated that streptomycin was consumed in the APH(6)-Id-catalyzed reaction, ATP was hydrolyzed, and streptomycin phosphate was produced in a substrate-dependent manner, demonstrating that APH(6)-Id is a streptomycin phosphotransferase. Steady-state kinetic analysis gave the following results: K m(streptomycin) of 0.38 ± 0.13 mM, K m(ATP) of 1.03 ± 0.1 mM, V max of 3.2 ± 1.1 μmol/min/mg, and k cat of 1.7 ± 0.6 s?1. Our study demonstrates that APH(6)-Id is a bona fide streptomycin phosphotransferase, functions as a monomer, and confers resistance to streptomycin.  相似文献   

3.
The kinetics of NADH oxidation by the outer membrane electron transport system of intact beetroot (Beta vulgaris L.) mitochondria were investigated. Very different values for Vmax and the Km for NADH were obtained when either antimycin A-insensitive NADH-cytochrome c activity (Vmax= 31 ± 2.5 nmol cytochrome c (mg protein)?1 min?1; Km= 3.1 ± 0.8 μM) or antimycin A-insensitive NADH-ferricyanide activity (Vmax= 1.7 ± 0.7 μmol ferricyanide (mg protein)?1 min?1; Km= 83 ± 20 μM) were measured. As ferricyanide is believed to accept electrons closer to the NADH binding site than cytochrome c, it was concluded that 83 ± 20 μM NADH represented a more accurate estimate of the binding affinity of the outer membrane dehydrogenase for NADH. The low Km determined with NADH-cytochrome c activity may be due to a limitation in electron flow through the components of the outer membrane electron transport chain. The Km for NADH of the externally-facing inner membrane NADH dehydrogenase of pea leaf (Pisum sativum L. cv. Massey Gem) mitochondria was 26.7 ± 4.3 μM when oxygen was the electron acceptor. At an NADH concentration at which the inner membrane dehydrogenase should predominate, the Ca2+ chelator, ethyleneglycol-(β-aminoethylether)-N,N,-tetraacetic acid (EGTA), inhibited the oxidation of NADH through to oxygen and to the ubiquinone-10 analogues, duroquinone and ubiquinone-1, but had no effect on the antimycin A-insensitive ferricyanide reduction. It is concluded that the site of action of Ca2+ involves the interaction of the enzyme with ubiquinone and not with NADH.  相似文献   

4.
Smooth muscle cells isolated from the secondary and tertiary branches of the rabbit mesenteric artery contain large Ca2+-dependent channels. In excised patches with symmetrical (140 mm) K+ solutions, these channels had an average slope conductance of 235 ± 3 pS, and reversed in direction at −6.1 ± 0.4 mV. The channel showed K+ selectivity and its open probability (P o ) was voltage-dependent. Iberiotoxin (50 nm) reversibly decreased P o , whereas tetraethylammonium (TEA, at 1 mm) reduced the unitary current amplitude. Apamin (200 nm) had no effect. The channel displayed sublevels around 1/3 and 1/2 of the mainstate level. The effect of [Ca2+] on P o was studied and data fitted to Boltzmann relationships. In 0.1, 0.3, 1.0 and 10 μm Ca2+, V 1/2 was 77.1 ± 5.3 (n= 18), 71.2 ± 4.8 (n= 16), 47.3 ± 10.1 (n= 11) and −14.9 ± 10.1 mV (n= 6), respectively. Values of k obtained in 1 and 10 μm [Ca2+] were significantly larger than that observed in 0.1 μm [Ca2+]. With 30 μm NS 1619 (a BKCa channel activator), V 1/2 values were shifted by 39 mV to the left (hyperpolarizing direction) and k values were not affected. TEA applied intracellularly, reduced the unitary current amplitude with a K d of 59 mm. In summary, BKCa channels show a particularly weak sensitivity to intracellular TEA and they also display large variation in V 1/2 and k. These findings suggest the possibility that different types (isoforms) of BKCa channels may exist in this vascular tissue. Received: 22 December 1997/Revised: 27 March 1998  相似文献   

5.
Kinetic studies of two glucosylation reactions catalyzed by an amyloglucosidase from Rhizopus sp. leading to the synthesis of vanillin-α/β-D-glucoside from D-glucose and vanillin and curcumin-bis-α-D-glucoside from D-glucose and curcumin were investigated in detail. Initial reaction rates were determined from kinetic runs involving different concentrations of D-glucose and vanillin (5?mM to 0.1?M) or D-glucose and curcumin (5?mM to 0.1?M). Graphical double reciprocal plots showed that the kinetics of the two enzyme catalyzed reactions exhibited Ping-Pong Bi-Bi mechanism where competitive substrate inhibition by vanillin/curcumin led to dead-end amyloglucosidase–vanillin/curcumin complexes at higher concentrations of vanillin/curcumin. An attempt to obtain the best fit of this kinetic model through computer simulation yielded in good approximation, the values of four important kinetic parameters, vanillin-α/β-D-glucoside: kcat=35.0±3.2 10?5M?h?1·mg, Ki=10.5±1.1?mM, KmD-glucose=60.0±6.2?mM, Kmvanillin=50.0±4.8?mM; curcumin-bis-α-D-glucoside: kcat=6.07±0.58 10?5M?h?1·mg, Ki=3.0±0.28?mM, KmD-glucose=10.0±0.9?mM, Kmcurcumin=4.6±0.5?mM.  相似文献   

6.
Human serum butyrylcholinesterase (BChE) has been converted into a stable but less active desensitized form when heated at 45°C for 24 h. The desensitized BChE follows Michaelis-Menten kinetics, whereas native enzyme exhibits slightly negative cooperativity with respect to butyrylthiocholine binding. In this study, we investigated the effects of Ni2+, Co2+, and Mn2+ on the desensitized BChE. It is found that all three ions were noncompetitive inhibitors of the desensitized BChE, and K i values have been determined as 7.816±1.060 mM, 48.722±4.635 mM, and 84.795±5.249 mM for Ni2+, Co2+, and Mn2+, respectively. In our previous study, these ions were linear mixed-type inhibitors of the native BChE. This finding confirms that desensitized BChE changes to a different conformation than native BChE. From the comparison of K i values of the trace elements, it can be said that Ni2+ is a more effective inhibitor of the desensitized BChE than Co2+ and Mn2+.  相似文献   

7.
In frog red blood cells, K-Cl cotransport (i.e., the difference between ouabain-resistant K fluxes in Cl and NO3) has been shown to mediate a large fraction of the total K+ transport. In the present study, Cl-dependent and Cl-independent K+ fluxes via frog erythrocyte membranes were investigated as a function of external and internal K+ ([K+] e and [K+] i ) concentration. The dependence of ouabain-resistant Cl-dependent K+ (86Rb) influx on [K+] e over the range 0–20 mm fitted the Michaelis-Menten equation, with an apparent affinity (K m ) of 8.2 ± 1.3 mm and maximal velocity (V max ) of 10.4 ± 1.6 mmol/l cells/hr under isotonic conditions. Hypotonic stimulation of the Cl-dependent K+ influx increased both K m (12.8 ± 1.7 mm, P < 0.05) and V max (20.2 ± 2.9 mmol/l/hr, P < 0.001). Raising [K+] e above 20 mm in isotonic media significantly reduced the Cl-dependent K+ influx due to a reciprocal decrease of the external Na+ ([Na+] e ) concentration below 50 mm. Replacing [Na+] e by NMDG+ markedly decreased V max (3.2 ± 0.7 mmol/l/hr, P < 0.001) and increased K m (15.7 ± 2.1 mm, P < 0.03) of Cl-dependent K+ influx. Moreover, NMDG+ Cl substitution for NaCl in isotonic and hypotonic media containing 10 mm RbCl significantly reduced both Rb+ uptake and K+ loss from red cells. Cell swelling did not affect the Na+-dependent changes in Rb+ uptake and K+ loss. In a nominally K+(Rb+)-free medium, net K+ loss was reduced after lowering [Na+] e below 50 mm. These results indicate that over 50 mm [Na+] e is required for complete activation of the K-Cl cotransporter. In nystatin-pretreated cells with various intracellular K+, Cl-dependent K+ loss in K+-free media was a linear function of [K+] i , with a rate constant of 0.11 ± 0.01 and 0.18 ± 0.008 hr−1 (P < 0.001) in isotonic and hypotonic media, respectively. Thus K-Cl cotransport in frog erythrocytes exhibits a strong asymmetry with respect to transported K+ ions. The residual, ouabain-resistant K+ fluxes in NO3 were only 5–10% of the total and were well fitted to linear regressions. The rate constants for the residual influxes were not different from those for K+ effluxes in isotonic (∼0.014 hr−1) and hypotonic (∼0.022 hr−1) media, but cell swelling resulted in a significant increase in the rate constants. Received: 19 November 1998/Revised: 23 August 1999  相似文献   

8.
Abstract

Saffron is the red dried stigmas of Crocus sativus L. flowers and used both as a spice and as a drug in traditional therapeutic. The biological activity of saffron in modern medicine is in development. Its numerous applications as an anti-oxidant and anti-cancer agent are due to its secondary metabolites and their derivatives (safranal, crocins, crocetin, dimethylcrocetin). The aim of this study was to examine the interaction of transfer RNA with safranal, crocetin, and dimethylcrocetin in aqueous solution at physiological conditions. Constant tRNA concentration (6.25 mM) and various drug/tRNA (phosphate) molar ratios of 1/48 to 1/8 were used. FT-IR and UV-Visible difference spectroscopic methods have been applied to determine the drug binding mode, the binding constants and the effects of drug complexation on the stability and conformation of tRNA duplex. External binding mode was observed for safranal crocetin and dimethylcrocetin, with overall binding constants Ksafranal = 6.8 (± 0.34) × 103 M?1, KCRT = 1.4 (± 0.31) × 104 M?1, and KDMCRT = 3.4 (± 0.30) × 104 M?1. Transfer RNA remains in the A-family structure, upon safranal, crocetin and dimethylcrocetin complexation.  相似文献   

9.
Properties of large conductance Ca2+-activated K+ channels were studied in the soma of motoneurones visually identified in thin slices of neonatal rat spinal cord. The channels had a conductance of 82 ± 5 pS in external Ringer solution (5.6 mm K+ o //155 mm K+ i ) and 231 ± 4 pS in external high-K o solution (155 mm K+ o //155 mm K+ i ). The channels were activated by depolarization and by an increase in internal Ca2+ concentration. Potentials of half-maximum channel activation (E50) were −13, −34, −64 and −85 mV in the presence of 10−6, 10−5, 10−4 and 10−3 m internal Ca2+, respectively. Using an internal solution containing 10−4 m Ca2+, averaged KCa currents showed fast activation within 2–3 msec after a voltage step to +50 mV. Averaged KCa currents did not inactivate during 400 msec voltage pulses. External TEA reduced the apparent single-channel amplitude with a 50% blocking concentration (IC50) of 0.17 ± 0.02 mm. KCa channels were completely suppressed by externally applied 100 mm charybdotoxin. It is concluded that KCa channels activated by Ca2+ entry during the action potential play an important role in the excitability of motoneurones. Received: 7 November 1996/Revised: 29 October 1997  相似文献   

10.
Lens Major Intrinsic Protein (MIP) is a member of a family of membrane transport proteins including the Aquaporins and bacterial glycerol transporters. When expressed in Xenopus oocytes, MIP increased both glycerol permeability and the activity of glycerol kinase. Glycerol permeability (p Gly ) was 2.3 ± 0.23 × 10−6 cm sec−1 with MIP vs. 0.92 ± 0.086 × 10−6 cm sec−1 in control oocytes. The p Gly of MIP was independent of concentration from 5 × 10−5 to 5 × 10−2 m, had a low temperature dependence, and was inhibited approximately 90%, 80% and 50% by 1.0 mm Hg++, 0.2 mm DIDS (diisothiocyanodisulfonic stilbene), and 0.1 mm Cu++, respectively. MIP-enhanced glycerol phosphorylation, resulting in increased incorporation of glycerol into lipids. This could arise from an increase in the total activity of glycerol kinase, or from an increase in its affinity for glycerol. Based on methods we present to distinguish these mechanisms, MIP increased the maximum rate of phosphorylation by glycerol kinase (0.12 ± 0.03 vs. 0.06 ± 0.01 pmol min−1 cell−1) without changing the binding of glycerol to the kinase (K M ∼ 10 μm). Received: 23 May 1997/Revised: 4 August 1997  相似文献   

11.
ABSTRACT. Euglena gracilis is a freshwater free‐living organism able to grow with ethanol as carbon source; to facilitate this metabolism several alcohol dehydrogenase (ADH) activities have been detected. We report the gene cloning, over‐expression, and biochemical characterization of a medium‐chain NAD+‐dependent ADH from E. gracilis (EgADH). The enzyme's amino acid sequence displayed the highest percentages of similarity and identity with ADHs of bacteria and fungi. In the predicted three‐dimensional model, all the residues involved in Zn2+, cofactor, and substrate binding were conserved. A conventional signal peptide for import into mitochondria could not be clearly identified. The protein of 37 kDa was over‐expressed, purified to homogeneity, and kinetically characterized. The enzyme's optimal pH was 7.0 for ethanol oxidation displaying a Vm of 11.7±3.6 U/mg protein and a Km of 3.2±0.7 mM for this substrate. Isopropanol and isopentanol were also utilized, although with less efficiency. It showed specificity for NAD+ with a Km value of 0.39±0.1 mM and Mg2+ or Zn2+ were essential for activity. The recombinant EgADH reported here may help to elucidate the roles that different ADHs have on the metabolism of short‐ and long‐chain alcohols in this microorganism.  相似文献   

12.
A kinetic study on esterification between d-glucose and l-phenylalanine catalysed by lipases from Rhizomucor miehei (RML) and Candida rugosa (CRL) in organic media investigated in detail showed that both the lipases followed a Ping-Pong Bi-Bi mechanism with two distinct types of competitive inhibitions. Graphical double reciprocal plots and computer simulation studies showed that competitive double substrate inhibition took place at higher concentrations leading to dead-end inhibition in the case of RML and in the case of CRL, inhibition only by d-glucose at higher concentrations leading to dead-end lipase–d-glucose complexes. An attempt to obtain the best fit of these kinetic models through curve-fitting yielded in good approximation, the apparent values of important kinetic parameters, RML: k cat = 2.24 ± 0.23 mM h−1 (mg protein)−1, K m l-phenylalanine = 95.6 ± 9.7 mM, K m d-glucose = 80.0 ± 8.5 mM, K i l-phenylalanine = 90.0 ± 9.2 mM, K i d-glucose = 13.6 ± 1.42 mM; CRL: k cat = 0.51 ± 0.06 mM h−1 (mg protein)−1, K m l-phenylalanine = 10.0 ± 0.98 mM, K m d-glucose = 6.0 ± 0.64 mM, K i d-glucose = 8.5 ± 0.81 mM.  相似文献   

13.
Abstract: The binding of radioactive piperidine-4-sulphonic acid ([3H]P4S) to thoroughly washed, frozen, and thawed membranes isolated from cow and rat brains has been studied. Quantitative computer analysis of the binding curves for four regions of bovine brain revealed the general presence of two binding sites. In these brain regions less satisfactory computer fits were obtained for receptor models showing one or three binding sites or negative cooperativity. With the use of Tris-citrate buffer at 0°C the two affinity classes for P4S in bovine cortex membranes revealed the following binding parameters: KD= 17 ± 7 nM (Bmax= 0.15 ± 0.07 pmol/mg protein) and KD= 237 ± 100 nM (Bmax= 0.80 ± 0.20 pmol/mg protein). Heterogeneity was also observed for association and dissociation rates of [3H]P4S. The slow binding component (kon= 5.6 × 107 or 8.8 × 107 M-1 min-1, kOff= 0.83 min-1, and KD= 14.7 or 9.4 nM, determined by two different methods in phosphate buffer containing potassium chloride) corresponds to the high-affinity component of the equilibrium binding curve (KD= 11 nM, Bmax= 0.12 pmol/mg protein in the same buffer system). The association and dissociation rates for the subpopulation of rapidly dissociating sites, apparently corresponding to the low-affinity sites, were too rapid to be measured accurately. The binding of [3H]P4S appears to involve the same two populations of sites with Bmax values similar to those for [3H]GABA binding to the same tissue, although the kinetic parameters for the two ligands are somewhat different. Furthermore, comparative studies on the inhibition of [3H]P4S and [3H]GABA binding by various GABA analogues, strongly suggest that P4S binds to the GABA receptors. The different effects of P4S and GABA on benzodiazepine binding are discussed.  相似文献   

14.
Chlorogenic acid, 3’-O-caffeoyl D-quinic acid, is an inherent ligand present inHelianthus annuus L. The effect of pH on chlorogenic acid binding to helianthinin suggests that maximum binding occurs at pH 6.0. The protein-polyphenol complex precipitates as a function of time. The association constant of the binding of chlorogenic acid to helianthinin, determined by equilibrium dialysis, at 31°C has a value of 3.5 ± 0.1 × 104M−-1 resulting in a ΔG value of − 6.32 ± 0.12 kcal /mol. The association constantK ais 1.0 ± 0.1 × 104M−1 as determined by ultraviolet difference spectral titration at 25°C with ΔG° of -5.46 ± 0.06 kcal/mol. From fluorescence spectral titration at 28°C, theK avalue is 1.38 ± 0.1 × 1 0 4M−1 resulting in a ΔG of − 5.70 ± 0.05 kcal/mol. The total number of binding sites on the protein are 420 ± 50 as calculated from equilibrium dialysis. Microcalorimetric data of the ligand-protein interaction at 23°C suggests mainly two classes of binding. The thermal denaturation temperature,T mof the protein decreases from 76°C to 72°C at 1 × 10−3M chlorogenic acid concentration upon complexation. This suggests that the complexation destabilizes the protein. The effect of temperature onK aof chlorogenic acid shows a nonlinear increase from 10.2°C to 45°C. Chemical modification of both lysyl and tryptophanyl residues of the protein decreases the strength of binding of chlorogenic acid. Lysine, tryptophan and tyrosine of protein are shown to be present at the binding site. Based on the above data, it is suggested that charge-transfer complexation and entropically driven hydrophobic interaction are the predominant forces that are responsible for binding of chlorogenic acid to the multisubunit protein, helianthinin. Publication No. 324.  相似文献   

15.
Abstract— Nicotine binds to homogenates of lobster walking leg nerve (Kd= 1.1 ± 0.3 μm , Bmax= 2.4 ± 0.5 nmol/g wet tissue), horseshoe crab leg nerve (Kd= 0.11 ± 0.06 μm , Bmax= 1.3 ± 0.6nmol/g), and kidney from 18-month-old rats (Kd= 0.8 ± 0.2 μm , Bmax= 23 ± 9 nmol/g). The pharmacological sensitivities of nicotine binding to lobster and horseshoe crab leg nerve homogenates are similar to that of the axonal cholinergic binding macromolecule (ACBM) (Denburg et al., 1972) of lobster leg. nerve membrane, while the binding to rat kidney is sensitive to α-bungarotoxin but not atropine or curare. There was no nicotine binding to rat heart or spleen, or to kidney from younger rats; little or no binding to blue crab nerve or to Torpedo electroplax motor nerve; and little binding (around 0.1 nmol/g) to rat liver. [3H]α-Bungarotoxin bound reversibly (0.17 nmol/g) to lobster leg nerve membrane The implications of these results for the distribution and function of the ACBM, and for the specificity of α-bungarotoxin, are discussed.  相似文献   

16.
Abstract: High-affinity μ-opioid receptors have been solubilized from rat brain membranes. In most experiments, rats were treated for 14 days with naltrexone to increase the density of opioid receptors in brain membranes. Occupancy of the membrane-associated receptors with morphine during solubilization in the detergent 3-[(3-cholamidopropyl)dimethyl]-1-propane sulfonate appeared to stabilize the μ-opioid receptor. After removal of free morphine by Sephadex G50 chromatography and adjustment of the 3-[(3-cholamidopropyl)dimethyl]-1-propane sulfonate concentration to 3 mM, the solubilized opioid receptor bound [3H][d -Ala2,N-Me-Phe4,Gly-ol5]-enkephalin ([3H]DAMGO), a μ-selective opioid agonist, with high affinity (KD = 1.90 ± 0.93 nM; Bmax = 629 ± 162 fmol/mg of protein). Of the membrane-associated [3H]-DAMGO binding sites, 29 ± 7% were recovered in the solubilized fraction. Specific [3H]DAMGO binding was completely abolished in the presence of 10 µM guanosine 5′-O-(3-thiotriphosphate). The solubilized receptor also bound [3H]diprenorphine, a nonselective opioid antagonist, with high affinity (KD = 1.4 ± 0.39 nM, Bmax = 920 ± 154 fmol/mg of protein). Guanosine 5′-O-(3-thiotriphosphate) did not diminish [3H]diprenorphine binding. DAMGO at concentrations between 1 nM and 1 µM competed with [3H]diprenorphine for the solubilized binding sites; in contrast, [d -Pen2,d -Pen5]-enkephalin, a δ-selective opioid agonist, and U50488H, a κ-selective opioid agonist, failed to compete with [3H]diprenorphine for the solubilized binding sites at concentrations of <1 µM. In the absence of guanine nucleotides, the DAMGO displacement curve for [3H]diprenorphine binding sites better fit a two-site than a one-site model with KDhigh = 2.17 ± 1.5 nM, Bmax = 648 ± 110 fmol/mg of protein and KDlow = 468 ± 63 nM, Bmax = 253 ± 84 fmol/mg of protein. In the presence of 10 µM guanosine 5′-O-(3-thiotriphosphate), the DAMGO displacement curve better fit a one- than a two-site model with KD = 815 ± 33 nM, Bmax = 965 ± 124 fmol/mg of protein.  相似文献   

17.
Effects of stilbene disulfonates on single KATP channel currents were investigated in inside-out and outside-out membrane patches from guinea pig ventricular myocytes. All drugs tested, 4,4′-diisothiocyanatostilbene, 2,2′-disulfonic acid (DIDS), 4-acetamido0-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS), 4,4′-dinitrostilbene-2,2′-disulfonic acid (DNDS), and 4,4′-diaminostilbene-2,2′-disulfonic acid (DADS), inhibited the KATP channel when they were applied to the intracellular, but not extracellular side of the membrane patch. Inhibitory actions of DIDS and SITS were irreversible, whereas those induced by DNDS and DADS were reversible. KATP channel inhibition was concentration dependent with an order of potency of DIDS>SITS ≈ DNDS > DADS; the Hill coefficient was close to unity for each drug. No change in channel conductance was observed during exposure to DIDS or DNDS; however, channel kinetics was altered. Distribution of the open time within bursts and that between bursts could be described by a single exponential relation in the absence and presence of DIDS or DNDS. The time constant of the open time within bursts was not altered, but that between bursts was decreased by DIDS (from 40.0±8.1 to 29.8±6.7 msec, P< 0.05) and by DNDS (from 43.1±9.3 to 31.9±7.1 msec, P<0.05). Distributions of closed time within bursts were also fitted to a single exponential function both in the absence and presence of drugs, while those of the closed time between bursts were fitted to a single exponential function in the absence of drugs, but a double exponential function was required in the presence of drugs. The rates of onset and development of channel inhibition by DIDS and DNDS appeared to be concentration dependent; a longer time was required to reach a new steady-state of channel activity as drug concentration was decreased. Inhibition by DIDS or DNDS was regulated by intracellular pH; inhibition was greater during acidic conditions. For DIDS (0.1 mm), the open probability (P o) expressed as a fraction of the value before drug application was 42.9±8.3% at pH 7.4 and 8.2±6.6% at pH 6.5 (P<0.01); corresponding values for DNDS (1 mm) were 39.6±17.6 and 8.9 ±5.8%, respectively (P<0.01). From these data, we conclude that stilbene disulfonates block the KATP channel by binding to their target site with one-to-one stoichiometry. Similar to glibenclamide, the binding of stilbene disulfonates may reflect interpolation in an “intermediate lipid compartment” between the cytosolic drug and the site of drug action.  相似文献   

18.
Particulate fractions (10,000g) from pupae of Stomoxys calcitrans transfer [14C]-mannose from GDP-[14C]-mannose to dolichol monophosphate and proteins. Production of the mannosyl lipid was inhibited by Mn2+, UDP, GMP, GDP, and EDTA. The insect growth regulator diflubenzuron had no effect on mannosyl transferase activity. Dolichol monophosphate and Mg2+ stimulated mannosyl transferase activity. The mannosyl lipid product was identified as mannosyl-phosphoryl-dolichol (Man-P-Dol). The apparent Km and Vmax values for the formation of Man-P-Dol using GDP-[14C]-Man while holding dolichol phosphate constant were 2.4 ± 0.9 μM and 9.4 ± 2.3 pmol Man-P-Dol·min?1·mg?1 protein, respectively. The apparent Km and Vmax values using dólichol phosphate while holding GDP-Man constant were 2.2 ± 1.2 μM and 18.5 ± 1.7 pmol Man-P-Dol·min?1·mg?1 protein.  相似文献   

19.
When expressed in Xenopus oocytes KAAT1 increases tenfold the transport of l-leucine. Substitution of NaCl with 100 mm LiCl, RbCl or KCl allows a reduced but significant activation of l-leucine uptakes. Chloride-dependence is not strict since other pseudohalide anions such as thyocyanate are accepted. KAAT1 is highly sensitive to pH. It can transport l-leucine at pH 5.5 and 8, but the maximum uptake has been observed at pH 10, near to the physiological pH value, when amino and carboxylic groups are both deprotonated. The pH value mainly influences the V max in Na+ activation curves and l-leucine kinetics. The kinetic parameters are K mNa = 4.6 ± 2 mm, V maxNa = 14.8 ± 1.7 pmol/oocyte/5 min for pH 8.0 and K mNa = 2.8 ± 0.7 mm, V maxNa = 31.3 ± 1.9 pmol/oocyte/5 min for pH 10.0. The kinetic parameters of l-leucine uptake are: K m = 120.4 ± 24.2 μm, V max = 23.2 ± 1.4 pmol/oocyte/5 min at pH 8.0 and K m = 81.3 ± 24.2 μm, V max = 65.6 ± 3.9 pmol/oocyte/5 min at pH 10.0. On the basis of inhibition experiments, the structural features required for KAAT1 substrates are: (i) a carboxylic group, (ii) an unsubstituted α-amino group, (iii) the side chain is unnecessary, if present it should be uncharged regardless of length and ramification. Received: 27 April 1999/Revised: 10 January 2000  相似文献   

20.
Synthetic [125I]-Tyr23, Phe2, Nle4-adrenocorticotropin (ACTH)-(1–38) ([125I]-ACTH analog) with full biological potency and near theoretical specific radioactivity (1800 ± 75 Ci/mmol) was used to investigate ACTH receptors on isolated rat adipocytes derived from 42-day-old rats. Binding to adipocytes was studied in the presence of 1% bovine serum albumin (BSA) as well as 4% BSA. The interaction of the [125I]-ACTH analog with adipocytes was highly specific, rapid, saturable, and reversible. Scatchard analysis of the binding data obtained in medium containing 1% BSA revealed a single class of binding sites with an apparent KD = 170 ± 11.9 pM. Competition experiments with unlabeled ACTH also yielded a comparable value for the apparent KD (143 ± 16.5 pm). The number of receptors per adipocyte was quite low (521–841/cell). The stimulation of lipolysis by ACTH was closely correlated with the binding, the apparent Km being 145–177 pm. At a concentration of 4% BSA in the incubation medium, the binding curve was shifted significantly to the right (apparent KD = 446 ± 77 pM) and the binding capacity was also significantly enhanced (1663 ± 208/cell) without any change in the apparent Km for glycerol release (187 ± 7.1 pm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号