首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermostable purine nucleoside phosphorylases, PUN PI and PUNPII, have been purified from Bacillus stearothermophilus JTS 859. The characterization of PUNPI was reported previously. [Hori et al.9 Agric. Biol. Chem. 53, 2205 (1989)] PUNPII had a molecular weight of 113,000, consisting of 4 identical subunits (Mw 28,000). The isoelectric point was 5.3. The Michaelis constants for inosine, guanosine, and adenosine were 0.22, 0.34, and 0.075 mm, respectively. The optimal temperature of the reaction was 70°C. The enzyme was stable at 70°C. Although other reported purine nucleoside phosphorylases were SH-enzymes, PUNPII was not a SH-enzyme because the enzyme reaction was not inhibited by PCMB and iodoacetic acid, the optimal pH of the enzyme reaction was from 7.0 to 11.0, and the enzyme did not contain cysteine.

PUNPII and PUNPI were different in several points. Not PUNPI but PUNPII could catalyze the phosphorolysis of adenosine. Specific activity of PUNPI and II for inosine were 405 and 50.6 μmol/min/mg protein at 60°C, respectively. PUNPI was stable at 80°C. PUNPII was stable at 70°C, but was denatured at 80°C.  相似文献   

2.
A type II restriction endonuclease, designated as GceGLI, was purified from cells of Gluconobacter cerinus IFO 3285. The purified enzyme was found to be homogeneous on Polyacrylamide gel disc electrophoresis. The enzyme worked best at 37°C and pH 7.5 and required 7 mM MgCl2 and 100 mM NaCl. The purified enzyme was stable when preincubated over a pH range of 7.5 to 9.5 for 12 hr at 4°C and a temperature range of 37 to 40°C for 5 min at pH 7.5. The enzyme was shown to cleave λ φX174 RF, SV40, pBR322, M13 mp7 RF and Ad2 DNAs at 4, 1,0, 0, 0 and 25 or more sites, respectively, and to recognize the DNA sequence of 5′-C-C-G-C-G-G-3′ and to cut between C and G on the right side of the sequence, being an isoschizomer of SacII of Streptomyces achromogenes ATCC 12767.  相似文献   

3.
An alkaline protease secreting Haloalkaliphilic bacterium (Gene bank accession number EU118361) was isolated from the Saurashtra Coast in Western India. The alkaline protease was purified by a single step chromatography on phenyl sepharose 6 FF with 28% yield. The molecular mass was 40 kDa as judged by SDS-PAGE. The enzyme displayed catalysis and stability over pH 8–13, optimally at 9–11. It was stable with 0–4 M NaCl and required 150 mM NaCl for optimum catalysis at 37 °C; however, the salt requirement for optimal catalysis increased with temperature. While crude enzyme was active at 25–80 °C (optimum at 50 °C), the purified enzyme had temperature optimum at 37 °C, which shifted to 80 °C in the presence of 2 M NaCl. The NaCl not only shifted the temperature profile but also enhanced the substrate affinity of the enzyme as reflected by the increase in the catalytic constant (K cat). The enzyme was also calcium dependent and with 2 mM Ca+2, the activity reached to maximum at 50 °C. The crude enzyme was highly thermostable (37–90 °C); however, the purified enzyme lost its stability above 50 °C and its half life was enhanced by 30 and sevenfold at 60 °C with 1 M NaCl and 50 mM Ca+2, respectively. The activity of the enzyme was inhibited by PMSF, indicating its serine type. While the activity was slightly enhanced by Tween-80 (0.2%) and Triton X-100 (0.05%), it marginally decreased with SDS. In addition, the enzyme was highly stable with oxidizing-reducing agents and commercial detergents and was affected by metal ions to varying extent. The study assumes significance due to the enzyme stability under the dual extremities of pH and salt coupled with moderate thermal tolerance. Besides, the facts emerged on the enzyme stability would add to the limited information on this enzyme from Haloalkaliphilic bacteria.  相似文献   

4.
For thermostable lipase production by Humicola lanuginosa No. 3, a simple optimized medium consisting of (%, w/v): sorbitol, 1.0; corn steep liquor, 1.0; NaCl, 0.5; CaCl2–2H20, 0.01; Silicone Km-70 (antifoamer), 0.2; and whale oil or castor oil as a lipase inducer, 0.3, was used. The yield of the lipase was about 80 — 120U/ml after 25 hr aerobic cultivation at 45°C when the pH was maintained at 7 to 8. The acetone powder preparation of the enzyme was most active at pH 7.0 and 45°C. The enzyme retained 100% activity on incubation for 20 hr at 60°C. The enzyme was able to hydrolyze almost all forms of natural fats tested (14 kinds), coconut oil being the most rapidly hydrolyzed.  相似文献   

5.
Protease secreted into the culture medium by alkalophilic Thermoactinomyces sp. HS682 was purified to an electrophoretically homogeneous state through only two chromatograhies using Butyl-Toyopearl 650M and SP-Toyopearl 650S columns. The purified enzyme has an apparent relative molecular mass of 25, 000 according to gel filtration on a Sephadex G-75 column and SDS-PAGE and an isoelectric point above 11.0.

Its proteolytic activity was inhibited by active-site inhibitors of serine protease, DFP and PMSF, and metal ions, Cu2+ and Hg2+. The enzyme was stable toward some detergents, sodium perborate, sodium triphosphate, sodium-n-dodecylbenzenesulfonate, and sodium dodecyl sulfate, at a concentration of 0.1% and pH 11.5 and 37°C for 60 min. The optimum pH was pH 11.5–13.0 at 37°C and the optimum temperature was 70°C at pH 11.5. Calcium divalent cation raised the pH and heat stabilities of the enzyme. In the presence of 5 mM CaCl2, it showed maximum proteolytic activity at 80°C and stability from pH 4–12.5 at 60°C and below 75°C at pH 11.5. The stabilization by Ca2+ was observed in secondary conformation deduced from the circular dichroic spectrum of the enzyme. The protease hydrolyzed the ester bond of benzoyl leucine ester well. The amino acid terminal sequence of the enzyme showed high homology with those of Microbiol serine protease, although alanine of the NH2-terminal amino acid was deleted.  相似文献   

6.
An extracellular serine alkaline protease of Bacillus clausii GMBAE 42 was produced in protein-rich medium in shake-flask cultures for 3 days at pH 10.5 and 37°C. Highest alkaline protease activity was observed in the late stationary phase of cell cultivation. The enzyme was purified 16-fold from culture filtrate by DEAE-cellulose chromatography followed by (NH4)2SO4 precipitation, with a yield of 58%. SDS-PAGE analysis revealed the molecular weight of the enzyme to be 26.50 kDa. The optimum temperature for enzyme activity was 60°C; however, it is shifted to 70°C after addition of 5 mM Ca2+ ions. The enzyme was stable between 30 and 40°C for 2 h at pH 10.5; only 14% activity loss was observed at 50°C. The optimal pH of the enzyme was 11.3. The enzyme was also stable in the pH 9.0–12.2 range for 24 h at 30°C; however, activity losses of 38% and 76% were observed at pH values of 12.7 and 13.0, respectively. The activation energy of Hammarsten casein hydrolysis by the purified enzyme was 10.59 kcal mol−1 (44.30 kJ mol−1). The enzyme was stable in the presence of the 1% (w/v) Tween-20, Tween-40,Tween-60, Tween-80, and 0.2% (w/v) SDS for 1 h at 30°C and pH 10.5. Only 10% activity loss was observed with 1% sodium perborate under the same conditions. The enzyme was not inhibited by iodoacetate, ethylacetimidate, phenylglyoxal, iodoacetimidate, n-ethylmaleimidate, n-bromosuccinimide, diethylpyrocarbonate or n-ethyl-5-phenyl-iso-xazolium-3′-sulfonate. Its complete inhibition by phenylmethanesulfonylfluoride and relatively high k cat value for N-Suc-Ala-Ala-Pro-Phe-pNA hydrolysis indicates that the enzyme is a chymotrypsin-like serine protease. K m and k cat values were estimated at 0.655 μM N-Suc-Ala-Ala-Pro-Phe-pNA and 4.21×103 min−1, respectively.  相似文献   

7.
The extracellular lipase produced by Acinetobacter sp. K5b4 was purified to homogeneity using ultrafiltration (cutoff 30?KDa) followed by gel filtration chromatography on Sephadex G-50. The enzyme was purified to homogeneity with an apparent molecular mass of 133?KDa by SDS-PAGE. This purification resulted on 10.24 fold with 18.3% recovery. The Km and Vmax of purified enzyme when using pNPL hydrolysis were 4.0?mM and 73.53?nmol/ml/min, respectively. The pure enzyme was greatly stimulated in the presence of 20, 40 and 60% (v/v) methanol, DMSO and acetone whereas, ethanol, acetonitrile and propanol decreased the enzyme activity. Maximum enzyme activity was achieved at pH 7.0 and incubation temperature of 27?°C. The enzyme was stable within a pH range of 6.5 to 7 at 27?°C for 1?h. The enzyme activity was enhanced up to 36% by KCl, BaCl2, MgCl2 and CaCl2 while obviously inhibited (10–20%) by CoCl2, ZnCl2, MnCl2 and CuCl2. No inhibitory effects were observed with 1.0 and 5.0?mM of 2-mercaptoethanol and EDTA. Similarly, SDS at 1.0?mM does not affect the enzyme activity while high reduction (80%) was observed at 5.0?mM SDS concentration. The enzyme was active against p-nitrophenyl esters of C8, C12 and C16 with highest preference to the medium carbon chain p-nitrophenyl caprylate (C8). The fact that the enzyme displays distinct stability in the presence of methanol, DMSO and acetone suggests that this lipase is suitable as biocatalyst in organic synthesis where such hydrophilic organic solvents are used as a reaction media.  相似文献   

8.
About 500 strains of dextranase producing microorganisms were examined in detail for pH- activity and enzyme stability. A gram positive bacterium identified as belonging to the genus Brevibacterium was found to produce alkaline dextranase. Maximal dextranase synthesis was obtained when grown aerobically at 26°C for 3 days in a medium containing 1 % dextran, 2% ethanol, 1 % polypeptone and 0.05 % yeast extract together with trace amounts of inorganic salts.

Brevibacterium dextranase had an optimum pH of 8.0 for activity at 37°C and an optimal temperature at 53°C at pH 7.5. The enzyme was quite stable over the range of pH 5.0 to 10.5 on 24 hr incubation at 37°C, especially on alkaline pH. The enzyme was also heat stable at 60°C for 10 min.  相似文献   

9.
Recombinant exoinulinase was partially purified from the culture supernatant ofS. cerevisiae by (NH4)2SO4 precipitation and PEG treatment. The purified inulinase was immobilized onto Amino-cellulofine with glutaraldehyde as a cross-linking agent. Immobilization yield based on the enzyme activity was about 15%. Optimal pH and temperature of immobilized enzyme were found to be 5.0 and 60°C, respectively. The enzyme activity was stably maintained in the pH ranges of 4.5 to 6.0 at 60°C. 100% of enzyme activity was observed even after incubation for 24 hr at 60°C. In the operation of a packed-bed reactor containing 412 U inulinase, dahalia inulin of 7.5%(w/v) concentration was completely hydrolyzed at flow rate of 2.0 mL/min at 60°C, resulting in a volumetric productivity of 693 g-reducing sugars/L/h. Under the reaction conditions of 1.0 mL/min flow rate with 2.5% inulin at 60°C, the reactor was successfully operated over 30 days without loss of inulinase activity.  相似文献   

10.
Tannin acyl hydrolase (Tannase) from Asp. oryzae No. 7 was purified. The purified enzyme was homogenous on column chromatography (DEAE-Sephadex A50, Sephadex G100), ultra centrifugation and electrophoresis.

The molecular weight of the enzyme estimated by gel filtration method was about 200,000.

The enzyme was stable in the range of pH 3 to 7.5 for 12 hr at 5°C, and for 25 hr at the same temperature in the range of pH 4.5 to 6. The optimum pH for the reaction was 5.5. It was stable under 30°C (over one day, in 0.05 M-citrate buffer of pH 5.5), and the optimum temperature was 30~40°C (reaction for 20min). The activity was lost completely at 55°C in 20 min at pH 5.5, or at 85°C in 10 min at the same pH.

Any metal salt tested did not activate the enzyme, Zink chloride and cupric chloride inhibited the activity or denatured the enzyme. The activity was lost completely by dialysis against EDTA-solution at pH 7.25, although it was not affected by dialysis against deionized water.  相似文献   

11.
The DNA ligase gene from thermophilic archaea of the genus Thermococcus (strain 1519) was identified and sequenced in the polymerase chain reaction. The recombinant enzyme LigTh1519 was expressed in Escherichia coli, purified, and characterized. LigTh1519 was capable of ligating the cohesive ends and single-strand breaks in double-stranded DNA (ATP as a cofactor). The optimum conditions for the ligase reaction appeared as follows: 100 mM NaCl, 50 mM MgCl2, pH 7.0–10.5, and temperature 70°C. More than 50% Lig1519 activity were preserved after incubation of the enzyme at 80°C for 30 min. New thermostable DNA ligase LihTh1519 may be used for basic and applied researches in molecular biology and genetic engineering.  相似文献   

12.
Members of the bacterial genus Acinetobacter have attracted great attention over the past few decades, on account of their various biotechnological applications and clinical implications. In this study, we are reporting the first experimental penicillin V acylase (PVA) activity from this genus. Penicillin acylases are pharmaceutically important enzymes widely used in the synthesis of semisynthetic beta-lactam antibiotics. The bacterium, identified as Acinetobacter sp. AP24, was isolated from the water of Loktak Lake (Manipur, India), an Indo-Burma biodiversity hotspot. PVA production was increased threefold in an optimized medium with 0.2% sodium glutamate and 1% glucose as nitrogen and carbon sources respectively, after 24 hr of fermentation at 28°C and pH 7.0 with shaking at 180 rpm. The enzyme was purified to homogeneity by cation-exchange chromatography using SP-sepharose resin. The PVA is a homotetramer with subunit molecular mass of 34 kD. The enzyme was highly specific toward penicillin V with optimal hydrolytic activity at 40°C and pH 7.5. The enzyme was stable from pH 5.0 to 9.0 at 25 °C for 2 hr. The enzyme retained 75% activity after 1 hr of incubation at 40°C at pH 7.5.  相似文献   

13.
Summary An X-prolyl-dipeptidylaminopep tidase (Pep-XP) was purified from the crude intracellular extract of Lactococcus lactis subsp. cremoris NRRL 634 by ion exchange and gel filtration chromatographies. The enzyme was purified 80-fold with a recovery of 6%, and appeared as a single band with a molecular weight of about 80 kDa on polyacrylamide gel electrophoresis with sodium dodecyl sulphate (SDS-PAGE). The peptidase showed its maximal activity on arginyl-proline-p-nitroanilide at pH 7.0 and at a temperature of 45 °C, although there was a good activity of Pep-XP in the pH range of 5.5–7.0 and temperatures between 40 and 50 °C. The Michaelis constant (K m) and the maximum reaction velocity (V max) values were 0.92 mM and 7.9 U/mg protein min, respectively. The activity of Pep-XP was completely inhibited by phenylmethanesulphonyl fluoride, an inhibitor of serine peptidases, and metal chelators had little effect on enzyme activity. The purified enzyme hydrolyzed synthetic substrates whose structure is X-Pro-Y like Lys-Pro-pNA, but did not hydrolyse Pro-pNA or azocasein, showing that the enzyme did not have aminopeptidase or endopeptidase activities.  相似文献   

14.
A novel (R)-1-phenylethanol dehydrogenase was successfully purified from Lysinibacillus sp. NUST506 by preparative polyacrylamide gel electrophoresis. The enzyme is a NAD+-dependent oxidoreductase. The molecular weight of the (R)-1-phenylethanol dehydrogenase measured by SDS-PAGE was about 28 kDa. Furthermore, the optimal reaction conditions for the oxidative reaction were 70°C and pH 9.5 and for the reductive reaction were 65°C and pH 6.5. Under the optimal conditions, the KM and kcat values with (R)-1-phenylethanol as a substrate were found to be 0.78 mM and 123 s–1 and with acetophenone they were 0.56 mM and 125 s–1, respectively. The (R)-1-phenylethanol dehydrogenase became more stable at pH 9.5 in comparison with pH 5.0 and high stability was noticed at 4 and 37°C. Properties of the enzyme place it as a promising candidate for industrial applications.  相似文献   

15.
A newly isolated Geobacillus sp. IIPTN (MTCC 5319) from the hot spring of Uttarakhand's Himalayan region produced a hyperthermostable α-amylase. The microorganism was characterized by biochemical tests and 16S rRNA gene sequencing. The optimal temperature and pH were 60°C and 6.5, respectively, for growth and enzyme production. Although it was able to grow in temperature ranges from 50 to 80°C and pH 5.5–8.5. Maximum enzyme production was in exponential phase with activity 135 U ml−1 at 60°C. Assayed with cassava as substrate, the enzyme displayed optimal activity 192 U ml−1 at pH 5.0 and 80°C. The enzyme was purified to homogeneity with purification fold 82 and specific activity 1,200 U mg−1 protein. The molecular mass of the purified enzyme was 97 KDa. The values of K m and V max were 36 mg ml−1 and 222 μmol mg−1 protein min−1, respectively. The amylase was stable over a broad range of temperature from 40°C to 120°C and pH ranges from 5 to 10. The enzyme was stimulated with Mn2+, whereas it was inhibited by Hg2+, Cu2+, Zn2+, Mg2+, and EDTA, suggesting that it is a metalloenzyme. Besides hyperthermostability, the novelty of this enzyme is resistance against protease.  相似文献   

16.
A novel phytase producing thermophilic strain of Bacillus laevolacticus insensitive to inorganic phosphate was isolated from the rhizosphere soil of leguminous plant methi (Medicago falacata). The culture conditions for production of phytase by B. laevolacticus under shake flask culture were optimized to obtain high levels of phytase (2.957 ± 0.002 U/ml). The partially purified phytase from B. laevolacticus strain was optimally active at 70 °C and between pH 7.0 and pH 8.0. The enzyme exhibited thermostability with ∼80% activity at 70 °C and pH 8.0 for up to 3 h in the presence/absence of 5 mM CaCl2. The phytase from B. laevolacticus showed high specificity for phytate salts of Ca+ > Na+. The enzyme showed an apparent K m 0.526 mM and V max 12.3 μmole/min/mg of activity against sodium phytate.  相似文献   

17.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase (EC. 1.4.3.5) has been purified from dry baker’s yeast to an apparent homogeneity on a polyacrylamide disc gel electrophoresis in the presence of 10 µm of phenylmethylsulfonyl fluoride throughout purification.

1) The purified enzyme, obtained as holo-flavoprotein, has a specific activity of 27µmol/mg/hr for pyridoxamine 5′-phosphate at 37°C, and a ratio of pyridoxine 5′-phosphate oxidase to pyridoxamine 5′-phosphate oxidase is approximately 0.25 at a substrate concentration of 285 µm. Km values for both substrates are 18 µm for pyridoxamine 5′-phosphate and 2.7 µm for pyridoxine 5′-phosphate, respectively.

2) The enzyme can easily oxidize pyridoxamine 5′-phosphate, but when pyridoxamine and pyridoxine 5′-phosphate are coexisted in a reaction mixture the enzyme activity is markedly suppressed much beyond the values expected from its high affinity (low Km) and low Vmax for the latter substrate.

3) Optimum temperature for both substrates is approximately 45°C, and optimum pH is near 9 for pyridoxamine 5′-phosphate and 8 for pyridoxine 5′-phosphate.

4) From the data obtained, the mechanism of regulation of this enzyme in production of pyridoxal 5′-phosphate and a reasonable substrate for the enzyme in vivo are discussed.  相似文献   

18.
The Amycolatopsis cihanbeyliensis Mut43, which is obtained by UV radiation, exhibited endoglucanase activity of 5.21?U/mL, which was ~2.3-fold higher than that of the wild strain (2.04?U/mL). The highest enzyme activity was obtained after 3 days of incubation at 32?°C, pH 7.0, 150?rpm, and 6% NaCl in a liquid medium containing 1.5% (w/v) wheat straw (0.25?mm of particle size) and 0.6% (w/v) yeast extract. Enzyme activity was eluted as a single peak (gel filtration chromatography), and Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) analysis of the corresponding peak revealed a molar mass of 30?kDa. Zymogram analysis confirmed the presence of a single active endoglucanase component. The enzyme was purified to ~21-fold, and the mean overall yield was ~6%. The purified endoglucanase was active up to 80?°C and showed a half-life of 214?min at 60?°C in the absence of substrate at pH 8.0. The apparent Km value for the purified endoglucanase was 0.70?mg/mL, while the Vmax value was 6.20 Units/μg. Endoglucanase activity was reduced (25%) by treatment with 30?U of proteinase K/mg. The addition of Mg+2 and Ca+2 (5?mM) enhanced endoglucanase activity. Additionally, endoglucanase activity in the presence of 5?mM SDS or organic solvents was 75 and 50% of maximum activity, respectively. The high levels of enzyme production from A. cihanbeyliensis Mut43 achieved under batch conditions, coupled with the temperature stability, activity over a broad pH range, relatively high stability (70–80%) in the presence of industrial laundry detergents and storage half-lives of 45 days at +4?°C and 75 days at ?20?°C signify the suitability of this enzyme for industrial applications as detergent additive.  相似文献   

19.
Cell-free extracts of 3–4 days old mats of nitrate-grown Penicillium citrinum catalyze the hydrolytic cleavage of the N-glycosidic bonds of inosine, guanosine and adenosine optimally at pH 4, 0.1 M citrate buffer. The same extracts catalyze the hydrolytic deamination of cytidine at a maximum rate in 0.08 M Tris-acetate buffer pH 6.5, 40°C and 50°C were the most suitable degrees for purine nucleoside hydrolysis and cytidine deamination, respectively. The incubation of the extracts at 60°C, in the absence of cytidine caused a loss in the deaminating activity, while freezing and thawing had no effect on both activities. The deaminating activity seems to be cytidine specific as neither cytosine, adenine, adenosine nor guanosine could be deaminated. Uridine competively inhibited this activity, while ammonia had no effect. The apparent Km value of this enzyme for cytidine was 1.57×10?3M and its Ki value for uridine was 7.8×10?3M. The apparent Km values of the N-glycosidic bond cleaving enzyme for inosine, guanosine and adenosine were 13.3, 14.2 and 20×10?3 M, respectively.  相似文献   

20.
The endopolysaccharide accumulated by Thermococcus hydrothermalis was extracted and purified from a 4 h culture. It presented an “amylopectin-like” structure with an average chain length of 14 and a ramification degree of 7.5%. The glucosyltransferase was isolated, partially purified and characterized. The molecular mass was 42 kDa by SDS PAGE and 85 ± 5 kDa by gel filtration. This enzyme was able to use both Uridine-5′-DiPhosphoGlucose (UDPG) and Adenosine-5′-DiPhosphoGlucose (ADPG) as substrates. Optimal pH and temperature for the enzyme were 5.5 and 80°C, respectively. In the presence of 3.2 mM ADPG, the half life of the protein was 6 min at 110°C. The apparent K m value with the two substrates was 0.9 mM, but the V max was 9.7 fold higher for ADPG. A branching activity was also detected at high temperature, up to 80°C by different methods: phosphorylase stimulation, iodine, and branching linkage assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号