首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liver phosphoglucomutase was found to catalyze also the reaction of Glc-1,6-P2 formation from Glc-1-P and Fru-1,6-Pz or Glc-1-P and glycerate-1,3-P2. The specific activity of Glc-1,6-P2 formation from Glc-1-P and Fru-1,6-P2 was 1/9200 of that of the mutase activity. The activity of Glc-1,6-P2 formation from Glc-1-P and glycerate-1,3-P2 was 1/122,000 of the mutase activity. From the results of the kinetics and the thermal inactivation experiments, the reaction of the mutase and Glc-1,6-P2 synthesis were strongly suggested to occur at the same active site of liver phosphoglucomutase.

Liver phosphoglucomutase exhibited the Glc-1,6-P2 phosphatase activity only in the presence of xylose 1-phosphate. The specific activity of phosphatase was only 1/154,000 of that of the mutase activity.  相似文献   

2.
Four kinds of the enzyme reactions have been reported for the synthesis of Glc-1,6-P2. However, any activity of Glc-1-P dismutase and phosphoglucokinase was not observed in the beef liver homogenate. When the liver homogenate was incubated with Glc-1-P and Fru-1,6-P2, a significant amount of Glc-1,6-P2 was formed. The Glc-1,6-P2 synthesis activity from Glc-1-P and Fru-1,6-P2 was caused by the action of phosphoglucomutase present in the liver homogenate. The most remarkable activity for Glc-1,6-P2 synthesis was observed when the homogenate was incubated with Glc-1-P and glycerate-1,3-P2. The Glc-1,6-P2 synthesis activity from Glc-1-P and glycerate-1,3-P2 was separated from the major peak of phosphoglucomutase activity by DEAE-Sephadex chromatography. The peak of Glc-1,6-P2 synthesis activity, however, still retained phosphoglucomutase activity.

Glc-1,6-P2 phosphatase activity was mainly observed in the mitochondria and microsome fraction. The properties of Glc-1,6-P2 phosphatase were differentiated from those of acid phosphatase and Glc-6-P phosphatase.  相似文献   

3.
Bisphosphoglycerate synthase from horse red cells has been purified to apparent homogeneity by a simple and efficient new procedure incorporating chromatography on a column of Sepharose 4B derivatized with blue dextran. The enzyme is similar to the human red cell synthase in subunit size. It is phosphorylated by either glycerate-1,3-P2 or glycerate-2,3-P2 to form a phosphoenzyme with the acid-lability of a histidyl phosphate. In addition to the synthase activity (glycerate-1,3-P2 → glycerate-2,3-P2), kcat 12.5 s?1, the enzyme has bisphosphoglycerate phosphatase activity in the presence of glycolate-2-P (glycerate-2,3-P2 → glycerate-P + Pi), kcat 2.6 s?1 and phosphoglycerate mutase activity (3-PGA ? 2-PGA), kcat 1.7 s?1. The energy of activation for the synthase reaction is 9.38 kcal/mol. Lineweaver-Burk plots of the kinetic data are parallel lines. In contrast intersecting patterns were obtained from similar experiments done with the human red cell enzyme. Further investigation is required to explain these differences. This enzyme may function as both synthase and phosphatase for bisphosphoglycerate in the red blood cell.  相似文献   

4.
The hexose bisphosphate activation of phosphoglucomutase was investigated with both plant (pea and mung bean) and animal (rabbit muscle) sources of the enzyme. Plant phosphoglucomutase was purified about 50-fold from seeds, and to a lesser extent, from seedlings of Pisum sativum L. cv Grenadier and seedlings of Phaseolus aureus. It was found that the plant enzyme was isolated in a mostly dephosphorylated form while commercial rabbit muscle phosphoglucomutase was predominantly in the phosphorylated form. Activation studies were done using the dephosphorylated enzymes. The range of activation constant (Ka) values were obtained for each bisphosphate were: for glucose 1-6-P2, 0.5 to 1.8; fructose 2,6-P2, 6 to 11.7; and fructose 1,6-P2, 7 micromolar, respectively. Fructose 2,6-P2 is known to occur in both plant and animal tissues at changing levels encompassing the Ka values found in this study; hence, these results implicate fructose 2,6-P2 as a natural activator of phosphoglucomutase, particularly in plants. Also, glucose 1,6-P2 has not been found in plants, and the method for measuring glucose 1,6-P2 by monitoring the activation of phosphoglucomutase is not specific.  相似文献   

5.
Incubation of blood with vanadate markedly increases the affinity of hemoglobin for oxygen, decreases the deformability of erythrocytes, reduces their osmotic fragility and alters their morphology, determining the appearance of equinocytic forms. Since vanadate is easily taken up by the erythrocytes and binds hemoglobin, these effects might result from interactions of vanadate with hemoglobin and with membrane proteins at the glycerate-2, 3-P2 and/or ATP binding site. In addition, vanadate inhibits phosphoglycerate mutase, phosphoglucomutase and adenylate-kinase activities from hemolysates, suggesting a possible inhibitory effect on erythrocyte metabolism  相似文献   

6.
Glucose-1,6-P2 and mannose-1,6-P2 are concluded to be important activators from “reconstruction” experiments showing that the other known effectors of phosphofructokinase poise it at ~ 0.1% of its Vmax, compared with the in vivo rate of ~ 1%. These activators may explain the relative insensitivity of red cell glycolysis to fructose-1,6-P2. Glucose-1,6-P2 is elevated more than two-fold in pyruvate kinase deficient cells but not in cells from patients with alkalosis although both have increased levels of the inhibitor, glycerate-2,3-P2.  相似文献   

7.
A mutant (NS 458) of Nicotiana sylvestris (Spegazzini and Comes) unable to synthesize leaf starch was isolated in the M2 generation following ethyl methanesulfonate mutagenesis by testing with iodine. Segregation ratios in reciprocal F2 progenies showed that the starchless phenotype resulted from a recessive mutation in a single nuclear gene. DEAE-agarose chromatography showed that the mutant is grossly deficient in plastid phosphoglucomutase (EC 2.1.5.1) activity. The structure of the enzyme is changed, as evidenced by increased Michaelis constants and by the prolonged activation period (>40 minutes) observed when the enzyme is assayed in triethanolamine buffer rather than imidazole buffer. The activity of the wild-type enzyme with saturating glucose 6-P alone was 7% of the activity when saturating glucose 1,6-P2 was also present. The results suggest that glucose 1,6-P2 is both an effector and a dissociable reaction intermediate. The growth rate of mutant and wild-type plants were not significantly different in continuous light and on an 8-hour dark, 16-hour light cycle and the mutants grew normally under greenhouse conditions. The mutant supports growth during diurnal periods of darkness by vacuolar storage of sugars instead of chloroplast storage of starch. The simplification in metabolism achieved by blocking the diversion of plastid fructose-6-P to starch facilitates the induction of oscillations in CO2 fixation.  相似文献   

8.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

9.
The inhibition of rabbit liver fructose 1,6-bisphosphatase (EC 3.1.3.11) by fructose 2,6-bisphosphate (Fru-2,6-P2) is shown to be competitive with the substrate, fructose 1,6-bisphosphate (Fru-1,6-P2), with Ki for Fru-2,6-P2 of approximately 0.5 μm. Binding of Fru-2,6-P2 to the catalytic site is confirmed by the fact that it protects this site against modification by pyridoxal phosphate. Inhibition by Fru-2,6-P2 is enhanced in the presence of a noninhibitory concentration (5 μm) of the allosteric inhibitor AMP and decreased by modification of the enzyme by limited proteolysis with subtilisin. Fru-2,6-P2, unlike the substrate Fru-1,6-P2, protects the enzyme against proteolysis by subtilisin or lysosomal proteinases.  相似文献   

10.
Summary The mechanisms of glycolytic rate control during hibernation in the ground squirrel Spermophilus lateralis were investigated in four tissues: heart, liver, kidney, and leg muscle. Overall glycogen phosphorylase activity decreased significantly in liver and kidney to give 50% or 75% of the activity found in the corresponding euthermic organs, respectively. The concentration of fructose-2,6-bisphosphate (F-2,6-P2) decreased significantly in heart and leg muscle during hibernation to 50% and 80% of euthermic tissue concentrations, respectively, but remained constant in liver and kidney. The overall activity of pyruvate dehydrogenase (PDH) in heart and kidney from hibernators was only 4% of the corresponding euthermic values. Measurements of phosphofructokinase (PFK) and pyruvate kinase (PK) kinetic parameters in euthermic and hibernating animals showed that heart and skeletal muscle had typical rabbit skeletal M-type PFK and M1-type PK. Liver and kidney PFK were similar to the L-type enzyme from rabbit liver, whereas liver and kidney PK were similar to the M2 isozyme found primarily in rabbit kidney. The kinetic parameters of PFK and PK from euthermic vs hibernating animals were not statistically different. These data indicate that tissue-specific phosphorylation of glycogen phosphorylase and PDH, as well as changes in the concentration of F-2,6-P2 may be part of a general mechanism to coordinate glycolytic rate reduction in hibernating S. lateralis.Abbreviations ADP adenosine diphosphate - AMP adenosine monophosphate - ATP adenonine triphoshate - EDTA ethylenediaminetetra-acetic acid - EGTA ethylene glycol tetra-acetic acid - F-6-P fructose 6-phosphate - F-1,6-P2 fructose 1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate - K a activation coefficient - I50 concentration of inhibitor which reduces control activity by 50% - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PFK 6-phosphofructo-1-kinase - PK pyruvate kinase  相似文献   

11.
Summary Pyruvate kinases from flight muscle and fat body of the cockroach,Periplaneta americana, were purified to homogeneity. The two tissues contained different forms of the enzyme which were separable by starch gel electrophoresis and isoelectric focusing (pI=5.75 for flight muscle and 6.15 for fat body). Both enzymes had molecular weights of 235,000±20,000.Flight muscle pyruvate kinase displayed Michaelis-Menten kinetics with respect to both ADP and P-enolpyruvate withK m values of 0.27 and 0.04 mM, respectively.K m for Mg2+ was 0.60 mM andK a for K+ was 15 mM. The enzyme was weakly inhibitied by four compounds, ATP, arginine-P,l-alanine and citrate with apparentK i values of 3.5, 15, 20 and 24 mM, respectively. Competitive inhibition by 3 mM ATP or 10 mM arginine-P raised theK m for P-enolpyruvate to 0.067 or 0.057 mM. Fructose-1,6-P2 did not activate the enzyme but reversed inhibitions by ATP and arginine-P.Fat body pyruvate kinase showed sigmoidal kinetics with respect to P-enolpyruvate with S0.5=0.32 mM andn H=1.43.K m values for ADP and Mg2+ were 0.30 and 0.80 mM, respectively with aK a for K+ of 10 mM. ATP andl-alanine were inhibitors of the enzyme; 2 mM ATP raised S0.5 for P-enolpyruvate to 0.48 mM while 3 mMl-alanine increased S0.5 to 0.84 mM. Neither citrate nor arginine-P inhibited the enzyme but citrate affected the enzyme by reversingl-alanine inhibition. Fat body pyruvate kinase was strongly activated by fructose-1,6-P2 with an apparentK a of 1.5 M. Fructose-1,6-P2 at 0.1 mM reduced S0.5 for P-enolpyruvate to 0.05 mM andn H to 1.0.Flight muscle and fat body pyruvate kinases from the cockroach show properties analogous to those of the muscle and liver forms of mammalian pyruvate kinase. Fat body pyruvate kinase is suited for on-off function in a tissue with a gluconeogenic capacity. Strong allosteric control with a feed-forward activation by fructose-1,6-P2 is key to coordinating enzyme function with glycolytic rate. The function of flight muscle pyruvate kinase in energy production during flight is aided by a lowK m for P-enolpyruvate, weak inhibitor effects by high energy phosphates and deinhibition of these effects by fructose-1,6-P2.  相似文献   

12.
Intact amyloplasts from endosperm of developing wheat grains have been isolated by first preparing the protoplasts and then fractionating the lysate of the protoplasts on percoll and ficoll gradients, respectively. Amyloplasts isolated as above were functional and not contaminated by cytosol or by organelles likely to be involved in carbohydrate metabolism. The enzyme distribution studies indicated that ADP-glucose pyrophosphorylase and starch synthase were confined to amyloplasts, whereas invertase, sucrose synthase, UDP-glucose pyrophosphorylase, hexokinase, phosphofructokinase-2 and fructose-2,6-P2ase were absent fro the amyloplast and mainly confined to the cytosol. Triose-P isomerase, glyceraldehyde-3-P dehydrogenase, phosphohexose isomerase, phosphoglucomutase, phosphofructokinase, aldolase, PPi-fructose-6-P-1 phosphotransferase, and fructose-l,6-P2ase, though predominantly cytosolic, were also present in the amyloplast. Based on distribution of enzymes, a probable pathway for starch biosynthesis in amyloplasts of developing wheat grains has been proposed.  相似文献   

13.
14.
Summary Wood frogs,Rana sylvatica, were sampled after freezing at –4°C (a short time course from 2 to 70 min after the appearance of the freezing exotherm) and thawing (20 h at 3°C after 70 min of freezing) and the regulation of liver glycolysis with respect to cryoprotectant glucose synthesis was examined. Within 5 min of the initiation of freezing, cryoprotectant concentrations in blood and liver had begun to increase. This was correlated with a rapid rise in the levels of hexose monophosphates in liver, including a 2.5 fold increase in glucose-6-P and 10 fold rise in fructose-6-P contents within the first 5 min post-exotherm. Contents of fructose-1,6-P2, fructose-2,6-P2, triose phosphates, P-enolpyruvate, and pyruvate did not significantly change over the course of freezing. Thawing sharply reduced the levels of hexose monophosphates in liver but raised P-enolpyruvate content by 2.3 fold. Changes in the contents of glycolytic intermediates over the freeze/thaw course are consistent with an inhibitory block of glycolysis at phosphofructokinase during freezing in order to facilitate a rapid glycogenolysis and production of cryoprotectant; during thawing, however, glycolysis appears to be inhibited at the level of pyruvate kinase.Possible regulatory control of cryoprotectant synthesis by covalent modification of liver glycolytic enzymes was examined. Glycogenolysis during freezing was facilitated by an increase in the percentage of glycogen phosphorylase in the activea (phosphorylated) form and also by an increase in the total amount (a+b) of enzyme expressed. For phosphofructokinase, kinetic changes as a result of freezing included a 40% reduction inK m for fructose-6-P, a 60% decrease inK a for fructose-2,6-P2, and a 2 fold increase in I50 for ATP. These changes imply a freezing-induced covalent modification of the enzyme but are not, apparently, the factors responsible for inhibition of glycolytic flux at the phosphofructokinase locus during glucose synthesis. Kinetic parameters of pyruvate kinase were not altered over the freeze/thaw course.  相似文献   

15.
The steady state kinetics and effects of salts on chicken breast phosphoglycerate mutase have been examined. The enzyme can catalyze three phosphoryl transfer reactions: mutase, bisphosphoglycerate phosphatase, and bisphosphoglycerate synthase. The mutase rate was measured in the favorable direction (Keq = glycerate-3-P/glycerate-2-P approximately equal to 12) using [2T]glycerate-2-P as substrate. The bisphosphoglycerate phosphatase activity was studied in the presence of the activator, glycolate-2-P. The latter is an analog of the glycerate-P's and appears to act as an abortive mutase substrate. The kinetic pattern obtained with both activities is that of a ping-pong mechanism with inhibition by the second substrate occurring at a lower concentration than the Km value for that substrate. The kinetic parameters for the mutase determined in 50 mM N-[tris(hydroxymethyl)methyl-2-amino]ethanesulfonate (TES)/sodium buffer containing 0.1 M KCl, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.069 micron; Km glycerate-2-P, 14 micron; Km glycerate-3-P approximately 200 micron; Ki glycerate-2-P, 4 micron. The kinetic parameters for the phosphatase reaction in 50 mM triethanolamine/Cl- buffer, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.065 micron:Km glycolate-2P, 479 micron; Ki glycolate-2-P, 135 micron. The enzyme is sensitive to changes in the ionic environment. Increasing salt concentrations activate the phosphatase in the presence of glycolate-2-P by decreasing the apparent Km of glycerate-2,3-P2. The effects are due to the anionic component and Cl- greater than acetate greater than TES. The same salts are competitive inhibitors with respect to glycolate-2-P. With high levels of KCl that produce a 30-fold decrease in the apparent maximal velocity due to competition with glycolate-2-P, the Km of glycerate-2,3-P2 remains low. These observations lead us to postulate that each monophosphoglycerate substrate has a separate site on the enzyme and that glycerate-2,3-P2 can bind to either site. The binding of anions to one site of the nonphosphorylated enzyme allows an increase in the on and off rates of glycerate-2,3-P2 at the alternate site. Salts inhibit the mutase reaction. The Km of glycerate-2,3-P2 is increased as is that of glycerate-2-P. The effect on the Km of glycerate-2,3-P2 is attributed to an increase in the off rate/on rate ratio for glycerate-2,3-P2. The bisphosphoglycerate synthase reaction is shown to require added glycerate-3-P. The equilibrium between enzyme and glycerate-1,3-P2 is favorable (Kdiss less than or equal 7 X 10(-8) M) and suggests that in the absence of a separate synthase this reaction may have functional significance.  相似文献   

16.
The relationship between the gas-exchange characteristics of attached leaves of Zea mays L. and the contents of photosynthetic intermediates was examined at different intercellular partial pressure of CO2 and at different irradiances at a constant intercellular partial pressure of CO2. (i) The behaviour of the pools of the C4-cycle intermediates, phosphoenolpyruvate and pyruvate, provides evidence for light regulation of their consumption. However, light regulation of phosphoenolpyruvate carboxylase does not influence the assimilation rate at limiting intercellular partial pressures of CO2. (ii) A close correlation between the pools of phosphoenolpyruvate and glycerate-3-phosphate exists under many different flux conditions, consistent with the notion that the pools of C4 and C3 cycles are connected via the interconversion of glycerate-3-phosphate and phosphoenolpyruvate. (iii) The ratio of triose-phosphate to glycerate-3-phosphate is used as an indicator of the availability of ATP and NADPH. Changes of this ratio with CO2 and with irradiance are compared with results obtained in C3 leaves and indicate that the mechanism of regulation of carbon assimilation by light in leaves of C4 plants may differ from that in C3 plants. (iv) The behaviour of the ribulose-1,5-bisphosphate pool with CO2 and irradiance is contrasted with the behaviour of these pools measured in leaves of C3 plants.Abbreviations P i intercellular CO2 pressure - RuBP ribulose-1,5-bisphosphate - PEP phosphoenolpyruvate - triose-P triose phosphates - PGA glycerate-3-phosphate  相似文献   

17.
The reaction: glycerate-1,3-P2 PLUS GLUCOSE-1-P YIELDS TO GLUCOSE-1,6-P2 plus glycerate-P is catalyzed by a distinct enzyme of mouse brain. A divalent metal requirement was shown when the enzyme was treated with imidazole and EDTA. Mg2+, Mn2+, Ca2+, Zn2+, Ni2+, Co2+, and Cd2+ were quite effective cofactors. The enzyme, in better than 50 percent yield, has been purified away from 99 percent of the phosphoglucomutase, phosphoglycrate mutase, and phosphofructokinase. Acetyl-P, ATP, enolpyruvate-P, creatine-P, and fructose-1,6-P2 are not phosphoryl donors. Glucose-6-P and mannose-1-P are good alternate acceptors. Mannose-6-P, galactose-Ps, and fructose-Ps have little or no acceptor activity. Strong inhibition was found with fructose-1,6-P2, glycerate-2,3-P2, enolpyruvate-P, and acetyl CoA. From the amount of activity and the kinetic constants of the purified enzyme it seems likely that this enzyme is responsible for the glucose-1,6-P2 synthesis of brain.  相似文献   

18.
Theodorou ME  Kruger NJ 《Planta》2001,213(1):147-157
A major problem in defining the physiological role of pyrophosphate:fructose 6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) is the 1,000-fold discrepancy between the apparent affinity of PFP for its activator, fructose 2,6-bisphosphate (Fru-2,6-P2), determined under optimum conditions in vitro and the estimated concentration of this signal metabolite in vivo. The aim of this study was to investigate the combined influence of metabolic intermediates and inorganic phosphate (Pi) on the activation of PFP by Fru-2,6-P2. The enzyme was purified to near-homogeneity from leaves of spinach (Spinacia oleracea L.). Under optimal in vitro assay conditions, the activation constant (K a) of spinach leaf PFP for Fru-2,6-P2 in the glycolytic direction was 15.8 nM. However, in the presence of physiological concentrations of fructose 6-phosphate, inorganic pyrophosphate (PPi), 3-phosphoglycerate (3PGA), phosphoenolpyruvate (PEP), ATP and Pi the K a of spinach leaf PFP for Fru-2,6-P2 was up to 2000-fold greater than that measured in the optimised assay and V max decreased by up to 62%. Similar effects were observed with PFP purified from potato (Solanum tuberosum L.) tubers. Cytosolic metabolites and Pi also influenced the response of PFP to activation by its substrate fructose 1,6-bisphosphate (Fru-1,6-P2). When assayed under optimum conditions in the gluconeogenic direction, the K a of spinach leaf PFP for Fru-1,6-P2 was approximately 50 μM. Physiological concentrations of PPi, 3PGA, PEP, ATP and Pi increased K a up to 25-fold, and decreased V max by over 65%. From these results it was concluded that physiological concentrations of metabolites and Pi increase the K a of PFP for Fru-2,6-P2 to values approaching the concentration of the activator in vivo. Hence, measured changes in cytosolic Fru-2,6-P2 levels could appreciably alter the activation state of PFP in vivo. Moreover, the same levels of metabolites increase the K a of PFP for Fru-1,6-P2 to an extent that activation of PFP by this compound is unlikely to be physiologically relevant. Received: 21 July 2000 / Accepted: 15 September 2000  相似文献   

19.
Two isoforms of phosphoglucomutase (PGM, EC 2.7.5.1) designated as PGM-I and PGM-II were purified from developing seeds of Brassica campestris L to their electrophoretic homogeneity. Both the forms had molecular mass of 59 kD each and were monomeric. PGM-I exhibited maximum activity at pH 7.5, while PGM-II evinced pH optima at 8.25. Both the forms exhibited hyperbolic response towards increasing concentrations of the substrate with Km values of 0.10 mM for PGM-I and 0.12 mM for PGM-II and had absolute requirement for glucose-1,6-P2. Fructose-1,6-P2 and 2,3-diphosphoglyceric acid inhibited the two forms non-competitively, whereas, ribulose-1,5-P2 inhibited only PGM-II, with Ki value of 0.8 mM. ATP inhibited the enzyme uncompetitively with Ki values for 0.26 mM (PGM-I) and 0.12 mM (PGM-11). Use of group specific protease inhibitors indicated Ser, His and Cys to play significant role in catalysis. On the basis of their differential behaviour and kinetic properties, PGM-I and PGM-II may be the forms present in cytosol and leucoplasts, respectively.  相似文献   

20.
Two isoenzymes of phosphoglucomutase from spinach (Spinacia oleracea L.) leaves can be separated by ammonium-sulfate gradient solubilization or DEAE-cellulose ion exchange chromatography. They were designated as phosphoglucomutase 1 and 2, according to decreasing electrophoretic mobility towards the anode at pH 8.9. Phosphoglucomutase 1 is localized in the stroma of the chloroplasts, phosphoglucomutase 2 is a cytosolic enzyme as judged from aqueous cell fractionation studies. Both isoenzymes have very similar properties such as dependence on MgCl2, pH activity profile, and Km for glucose-1-phosphate and glucose-1,6-bisphosphate. From sedimentation-velocity analysis a molecular weight of 60,000 was estimated for either isoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号