首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Torulaspora delbrueckii alone and in combination with methyl jasmonate was applied to the control of Penicillium expansum. For evaluation of direct effect of Methyl jasmonate on mycelial growth of pathogen, it was added to potato dextrose agar culture at different concentrations. Effect of methyl jasmonate on population of yeast in nutrient yeast dextrose broth media was determined after 24 and 48 h. Results showed that methyl jasmonate had no significant direct effect on pathogen and yeast. Also, evaluation of methyl jasmonate effect on the population of yeast in apple wounds indicated that methyl jasmonate at different concentrations increased population growth of yeast at 20°C, 8 and 15 days after inoculation in toward the control and it had no significant effect on population dynamics of yeast at 4°C. In vivo, the results indicated that combination of methyl jasmonate with antagonistic yeast reduced the blue mould of apples better than methyl jasmonate and yeast alone.  相似文献   

2.
The biological activities of methyl jasmonate, ABA, methyl abscisate, and malformin were compared in a variety ofVigna radiata abscission tests. Although each compound diminished or completely negated the antiethylene properties of Ag+, differences in potency were observed. ABA and ABA-Me stimulated leaf abscission in the dark, potentiated abscission with low concentrations of ethephon, and interacted synergistically with malformin, whereas methyl jasmonate was inactive in each of these tests. Methyl jasmonate was most active in potentiating leaf abscission induced by high ethephon concentrations and stimulated petiole abscission, whether applied proximally or distally, from debladed explants. In two tests, negation of Ag+ activity and interaction with malformin, ABA concentrations as low as 0.1 M were biologically active and indicated that ABA can be a highly active abscission-inducing compound. Based on differences in biological activity, it was concluded that the modes of action of methyl jasmonate, ABA, and malformin were different.Journal Paper No. 9811 of the Purdue Agricultural Experiment Station.  相似文献   

3.
The effects of exogenously applied methyl jasmonate on content of biogenic amines: putrescine, spermidine, tyramine, cadaverine and 2-phenylethylamine in seedlings of common buckwheat (Fagopyrum esculentum Moench) were investigated. The studies have shown that methyl jasmonate stimulates the conversion of l-phenylalanine into 2-phenylethylamine and increases the endogenous levels of putrescine in hypocotyls and cotyledons of buckwheat seedlings. Simultaneous feeding the seedlings with l-phenylalanine and methyl jasmonate has indicated that conversion of l-phenylalanine into 2-phenylethylamine can be one of possible reasons, caused by the methyl jasmonate suppression of anthocyanins synthesis in hypocotyls. To our knowledge, the stimulation of conversion of l-phenylalanine into 2-phenylethylamine by methyl jasmonate, as found in the present study, is described for the first time in higher plants.  相似文献   

4.
M. C. Astle  P. H. Rubery 《Planta》1985,166(2):252-258
The effects of methyl jasmonate and jasmonic acid on uptake of abscisic acid (ABA) by suspension-cultured runner-bean cells and subapical runner-bean root segments have been investigated. Increasing concentrations of methyl jasmonate inhibit ABA uptake by the cultured cells with a K i of 22±3 M. This is not due to cytoplasmic acidification or to effects on metabolism of ABA, and is not additive with inhibition of radioactive ABA uptake by nonradioactive ABA. Uptake of indol-3-yl acetic acid (IAA) is unaffected by methyl jasmonate. The maximum effect of nonradioactive ABA in inhibiting uptake of radioactive ABA, previously shown to reflect saturation of an ABA carrier, is generally greater than the effect of maximally inhibitory concentrations of methyl jasmonate. Similar results were obtained with root segments, but longer incubation times were necessary to observe inhibitory effects of methyl jasmonate. Demethylation of methyl jasmonate to jasmonic acid does not appear to be required since similar concentrations of jasmonic acid had no observable direct effect on ABA uptake other than that attributable to cytoplasmic acidification. Histidine reagents, a proton ionophore and acidic external pH all affect in parallel the inhibition by methyl jasmonate and nonradioactive ABA of uptake of radioactive ABA by the cultured cells. There is no effect of ABA or nonradioactive methyl jasmonate on uptake of radioactive methyl jasmonate by the cultured cells. It is proposed that methyl jasmonate interacts with the ABA carrier. Various models for this interaction are discussed.Abbreviations ABA abscisic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3-yl acetic acid  相似文献   

5.
When applied in vitro, methyl jasmonate is sensed by the red seaweed Grateloupia imbricate, substantially and visually affecting its carposporogenesis. However, although there is some understanding of the morphological changes induced by methyl jasmonate in vitro, little is known about the genes that are involved in red seaweed carposporogenesis and how their protein products act. For the work reported herein, the expression of genes in red seaweed that encode enzymes involved in the synthesis of methyl jasmonate (jasmonic acid carboxyl methyl transferase and a putative methyl transferase) was monitored. Additionally the genes involved in oxidation (cytochrome P450 and WD40), jasmonate synthesis, signal transduction, and regulation of reactive oxygen species (MYB), and reproduction (ornithine decarboxylase) were monitored. To determine when or if the aforementioned genes were expressed during cystocarp development, fertilized and fertile thalli were exposed to methyl jasmonate and gene expression was measured after 24 and 48 h. The results showed that methyl jasmonate promoted differential gene expression in fertilized thalli by 24 h and upregulated expression of the ornithine decarboxylase gene only by 48 h in fertile thalli (0.75 ± 003 copies · μL?1 at 24 h vs. 1.11 ± 0.04 copies · μL?1 at 48 h). We conclude that Ornithine decarboxylase expression involves methyl jasmonate signaling as well as development and maturation of cystocarps.  相似文献   

6.
Shortly after germination, alkaloids are rapidly synthesized in seedlings of both Catharanthus roseus L.G. Don and Cinchona ledgeriana Moens. The effect of low-level, atmospheric methyl jasmonate on this developmentally controlled process was studied. In both species, about 1 p.p.m. of methyl jasmonate vapor significantly enhanced alkaloid synthesis during germination, resulting in a doubling of alkaloid content in seedlings. Treatment with methyl jasmonate resulted in increased allocation of alkaloid precursors and in enhanced enzyme activities in alkaloid biosynthesis. The ability of methyl jasmonate to increase alkaloid biosynthesis decreased with age of the seedlings. Susceptibility of the process to methyl jasmonate was confined to a narrow time interval where the developmentally regulated onset of alkaloid synthesis occurred. When methyl jasmonate was applied at later developmental stages, its ability to enhance alkaloid content in the seedlings declined sharply.  相似文献   

7.
Two epimers of methyl jasmonate were optically resolved by capillary gas chromatography, using heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin as the chiral stationary phase. In the tea volatile concentrates, both of these epimers were present as only one enantiomer, their absolute configurations being ascertained as (–)-(1R,2R)-methyl jasmonate and (+)-(1R,2S)-methyl epijasmonate.

The thermal isomerization of methyl epijamonate to methyl jasmonate was also clarified by optically resolved gas chromatography to have occurred at the asymmetric carbon of the C-2 position that is connected to the carbonyl group.  相似文献   

8.
The biological activities of methyl jasmonate, ABA, methyl abscisate, and malformin were compared in a variety ofVigna radiata abscission tests. Although each compound diminished or completely negated the antiethylene properties of Ag+, differences in potency were observed. ABA and ABA-Me stimulated leaf abscission in the dark, potentiated abscission with low concentrations of ethephon, and interacted synergistically with malformin, whereas methyl jasmonate was inactive in each of these tests. Methyl jasmonate was most active in potentiating leaf abscission induced by high ethephon concentrations and stimulated petiole abscission, whether applied proximally or distally, from debladed explants. In two tests, negation of Ag+ activity and interaction with malformin, ABA concentrations as low as 0.1 μM were biologically active and indicated that ABA can be a highly active abscission-inducing compound. Based on differences in biological activity, it was concluded that the modes of action of methyl jasmonate, ABA, and malformin were different.  相似文献   

9.
The effect of atmospheric methyl jasmonate on the oxylipin pathway was investigated in leaves of tobacco (Nicotiana tabacum L.), cucumber (Cucumis sativa L.), and Arabidopsis thaliana (L.). Differential sensitivities of test plants to methyl jasmonate were observed. Thus, different concentrations of methyl jasmonate were required for induction of changes in the oxylipin pathway. Arabidopsis was the least and cucumber the most sensitive to methyl jasmonate. Methyl jasmonate induced the accumulation of lipoxygenase protein and a corresponding increase in extractable lipoxygenase activity. Atmospheric methyl jasmonate additionally induced hydroperoxide lyase activity and the enhanced production of several volatile six-carbon products. It is interesting that lipid hydroperoxidase activity, which is a measure of hydroperoxide lyase plus allene oxide synthase plus possibly other lipid hydroperoxide-metabolizing activities, was not changed by methyl jasmonate treatment. Methyl jasmonate selectively altered the activity of certain enzymes of the oxylipin pathway (lipoxygenase and hydroperoxide lyase) and increased the potential of leaves for greatly enhanced six-carbon-volatile production.  相似文献   

10.
Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health‐promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars (‘Duke’ and ‘Blueray’) in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the ‘Blueray’ variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. ‘Duke’ is a richer sourche of anthocyanins compared to ‘Blueray’, treatment with methyl jasmonate promoted in ‘Blueray’ an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated ‘Duke’ berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars.  相似文献   

11.
The terpenoid and phenolic constituents of conifers have been implicated in protecting trees from infestation by bark beetles and phytopathogenic fungi, but it has been difficult to prove these defensive roles under natural conditions. We used methyl jasmonate, a well-known inducer of plant defense responses, to manipulate the biochemistry and anatomy of mature Picea abies (Norway spruce) trees and to test their resistance to attack by Ips typographus (the spruce bark beetle). Bark sections of P. abies treated with methyl jasmonate had significantly less I. typographus colonization than bark sections in the controls and exhibited shorter parental galleries and fewer eggs had been deposited. The numbers of beetles that emerged and mean dry weight per beetle were also significantly lower in methyl jasmonate-treated bark. In addition, fewer beetles were attracted to conspecifics tunneling in methyl jasmonate-treated bark. Stem sections of P. abies treated with methyl jasmonate had an increased number of traumatic resin ducts and a higher concentration of terpenes than untreated sections, whereas the concentration of soluble phenolics did not differ between treatments. The increased amount of terpenoid resin present in methyl jasmonate-treated bark could be directly responsible for the observed decrease in I. typographus colonization and reproduction.  相似文献   

12.
Summary Experiments were carried out with Taxus baccata cell lines showing different paclitaxel-producing capacities (between 1.74 and 19.91 mgl−1) when growing in a selected product-formation medium that specifically stimulated the production of taxane to the detriment of cell growth. Through mixing low-, medial- and high-producing lines, it could be observed that paclitaxel productivity in the resulting mixed lines was clearly higher than the mean productivity of the individual lines before mixing. This suggests that culture components generated by high-producing individual lines within the population might induce paclitaxel production. Although the accumulation of paclitaxel and baccatin III was higher when 100 μM methyl jasmonate was added to the subcultures of the mixed lines, the results indicate that exogenously applied methyl jasmonate was not the first factor to stimulate taxane production. The possible effects of methyl jasmonate elicitation and paclitaxel accumulation on cell viability are also considered.  相似文献   

13.
ABSTRACT

The pathogenic fungi Gibberella fujikuroi and Fusarium commune produce jasmonic acid. The application of volatile deuterium-labeled methyl jasmonate increased the amount of nonlabeled JA present in G. fujikuroi and F. commune. These results indicate that the fungi have the ability to react with airborne methyl jasmonate in a manner similar to a plant.  相似文献   

14.
Cell suspension cultures of Ilex paraguariensis, a South American native tree known as the maté plant, were initiated in order to investigate plant defense. Cultures were characterized for their cell growth, chemical composition and sugar consumption. The present work quantified some effects of salicylic acid, methyl jasmonate, cellulase and ethanol on cell growth and sugar metabolism. Results suggest that salicylic acid and methyl jasmonate play a role in Ilex paraguariensis response against exogenous ethanol by enhancing its glucosylation by 50% if compared to addition of ethanol alone.  相似文献   

15.
In the endeavor to enhance the production of pharmaceutically valuable tropane alkaloids including hyoscyamine and scopolamine in Hyoscyamus niger, methyl jasmonate (MeJA) showed significant stimulation both in tropane biosynthetic pathway enzymes activities and tropane alkaloids yields. Therefore it was speculated that genetic engineering of jasmonate biosynthetic pathway might enhance the endogenous jasmonates concentration, followed by stimulating the production of tropane alkaloids. Herein a full-length cDNA encoding allene oxide synthase (AOS, EC 4.2.1.92), the first committed step enzyme in jasmonate biosynthetic pathway was reported (named HnAOS, GenBank accession: EF532599). HnAOS was a novel member of the cytochrome P450 (CYP74A) subfamily. Real-time quantitative PCR analysis showed that HnAOS mRNA accumulated mainly in stems, and responded significantly to wounding or methyl jasmonate. The article is published in the original.  相似文献   

16.
Methyl jasmonate (JA-Me) at a concentration of 0.5% in lanolin paste totally inhibited bulblets formation induced by benzyladenine in intactMuscari bulbs. Lower concentrations of JA-Me delayed development and growth of bulblets induced by benzyladenine. It seems that methyl jasmonate acts as a powerful inhibitor of cell division induced by cytokinin in used test. In comparison with methyl jasmonate, abscisic acid did not show an inhibitory effect on bulblets formation induced by benzyladenine, even in a higher concentration.  相似文献   

17.
18.
The effect of two chemical elicitors, salicylic acid and methyl jasmonate, on the production of gossypol, 6-methoxygossypol, and 6,6′-dimethoxygossypol in Gossypium barbadense hairy roots was examined. Methyl jasmonate, but not salicylic acid, was found to increase the production of gossypol and its methylated forms, but with a concomitant reduction in culture growth. The optimal methyl jasmonate dose was between 100 and 300 μM for hairy roots harvested 7 days after elicitation. After 20 d of induction with 100 μM methyl jasmonate, an eightfold increase in the level of gossypol was observed in elicited cultures compared with control cultures, double the highest gossypol levels previously reported for any cotton tissue. A two to threefold increase in the level of 6-methoxygossypol and a slight increase in the levels of 6,6′-dimethoxygossypol were also observed. Although methyl jasmonate stimulated the production of both optical forms of gossypol, the distribution of the enantiomers was different between elicited and control cultures.  相似文献   

19.
Both elicitation and precursor feeding are effective strategies for improving secondary metabolite production in plant cell suspension cultures. In this study, cell suspension cultures of Vitis vinifera subjected to methyl jasmonate treatment resulted in a significant increase in levels of anthocyanin production. Moreover, a combination of 5 mg/L phenylalanine and 50 mg/L methyl jasmonate promoted the highest level of anthocyanin biosynthesis, resulting in 4.6- and 3.4-fold increases in anthocyanin content and yield, respectively, over the control. The optimum period for elicitation of anthocyanin synthesis was 4 days following incubation in the presence of elicitors, at the beginning of the exponential growth phase. V. vinifera cell lines of different anthocyanin-producing capabilities responded differently to elicitation and precursor feeding. Anthocyanin production of a low-producing cell line, VV06, could be enhanced with addition of elicitors and precursor feeding. Methyl jasmonate was the only elicitor that increased anthocyanin production of the high-producing cell line VV05, but contributed to moderate enhancement of anthocyanin production compared with VV06. For cell line VV06, synergistic effects were observed for all treatment combinations of methyl jasmonate along with other elicitors and precursors. In addition, 6.1- and 4.6-fold increases in anthocyanin content and yield, respectively, were obtained in the presence of 5 mg/L phenylalanine, 50 mg/L methyl jasmonate, and 1 mg/L dextran. However, none of these treatment combinations exhibited synergistic effects in cell line VV05.  相似文献   

20.
Exposure of soybean (Glycine max) seedlings to low levels of atmospheric methyl jasmonate induced the expression and accumulation of one or more lipoxygenase(s) in the primary leaves, hypocotyls, epicotyls, and cotyledons. In the primary leaf, the major site of lipoxygenase accumulation in response to methyl jasmonate was in the vacuoles of paraveinal mesophyll cells. In the other organs, however, most of the methyl jasmonate-responsive lipoxygenase(s) were associated with both the epidermal and cortical cells and were present in both vacuoles and plastids. In plastids, the methyl jasmonate-responsive lipoxygenase was sequestered into protein inclusion bodies; no lipoxygenase was evident in either the thylakoids or the stroma. Both spectrophotometric measurement of conjugated diene formation and thin layer chromatography of lipoxygenase product formation indicated that methyl jasmonate caused an increase in the amount of lipoxygenase activity. Electron microscopy of the methyl jasmonate-responsive lipoxygenase protein in the vacuoles showed that it was arranged into a stellate, paracrystalline structure in various cell types other than the paraveinal mesophyll cells. The paracrystals appeared to be composed of tubular elements of between 5 and 8 nm in diameter, were of variable length, and were observed in most cell types of the seedling organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号