首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
细胞致死性膨胀毒素(cytolethal distending toxin, CDT)属于AB2毒素,由多种革兰氏阴性菌产生。CDT是第一种被描述的细菌基因毒素,编码3种多肽:CDTA、CDTB和CDTC。CdtB是活性部分,有损伤多种细胞类型的能力。CDT具有一种新的分子作用模式,会干扰真核细胞周期的进展,从而导致G2/M停滞和细胞凋亡,该作用机制针对细胞,而且现阶段对于CDT的研究更多也是细胞层面,但是CDT作为毒力因子最终作用是损伤宿主造成疾病。但目前对CDT与宿主相互作用的分子机制了解尚不清晰。本文对细胞致死性膨胀毒素作为毒力因子从损伤上皮屏障、适应性免疫以及促进炎症反应三方面来综合阐述其对宿主防御机制途径的损伤,以期了解其致病机制以及为其临床治疗提供理论依据和新思路。  相似文献   

3.
Toll-like receptors as an escape mechanism from the host defense   总被引:15,自引:0,他引:15  
Toll-like receptors (TLRs) are probably the most important class of pattern-recognition receptors. Recognition of pathogen-associated molecular patterns (PAMPs) by TLRs, either alone or in heterodimerization with other TLR or non-TLR receptors, induces the production of signals that are responsible for the activation of genes important for an effective host defense, especially those of proinflammatory cytokines. Recent studies also suggest that pathogenic microorganisms can modulate or interfere with TLR-mediated pattern recognition and can use TLRs as an escape mechanism from the host defense. Three major TLR-mediated escape mechanisms have been identified: TLR2-induced immunosuppression, especially through induction of interleukin (IL)-10 release; blockade of TLR recognition; and TLR-mediated induction of viral replication. Thus, TLR signals are not only beneficial to the host, but in certain situations the activation of particular TLR responses by microorganisms might serve as an escape mechanism from the host defense.  相似文献   

4.
万超  彭练慈  叶超 《微生物学报》2023,63(4):1305-1317
宿主防御肽是一类广泛存在于脊椎动物的小分子多肽,具有广谱的抗菌活性以及抗炎、细胞趋化、促进血管生成和修复损伤等免疫调节功能。以往的研究多集中在宿主防御肽抗细菌和真菌感染的研究上。近年来大量研究发现,宿主防御肽也具有广泛的抗病毒活性,在临床各类病毒病的预防和治疗上具有潜在的应用前景。本文围绕宿主防御肽直接杀伤病毒、调节病毒感染过程和参与宿主抗病毒天然免疫调节这3个方面的作用机制进行综述,为宿主防御肽抗病毒相关研究和相关抗病毒生物药物的研发提供参考和借鉴。  相似文献   

5.
Xie C  Tang X  Xu W  Diao R  Cai Z  Chan HC 《PloS one》2010,5(12):e15255

Background

Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated.

Methodology/Principal Findings

In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl and HCO3 , in mediating prostate HCO3 secretion and its possible role in bacterial killing. Upon Escherichia coli (E coli)-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II), along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO3 content (>50 mM), rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO3 on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E coli. The relevance of the CFTR-mediated HCO3 secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues.

Conclusions/Significance

The CFTR and its mediated HCO3 secretion may be up-regulated in prostatitis as a host defense mechanism.  相似文献   

6.
EB病毒(Epstein-Barr vius,EBV)是一种最广泛的对人类感染的γ疱疹病毒,与人类多种疾病尤其是恶性肿瘤有关。其致病的一个重要条件是能够在人体B细胞中长期潜伏,并且在人体免疫力低下时被激活并增殖,这表明EB病毒存在逃逸宿主细胞免疫的机制。从潜伏期EB病毒基因表达的下调、干扰抗原加工和提呈、调节细胞毒性T细胞(Cytotoxic lymphocyte,CTL)免疫应答、干扰细胞因子的作用、干扰CTL的活动及抑制宿主细胞凋亡、抑制辅助性T细胞1(Helper T cell 1,Th1)免疫应答等方面,对EB病毒免疫逃逸的分子机制作一简要综述。  相似文献   

7.
8.
Complement is a system of plasma proteins that aids in the elimination of pathogens from the body. We hypothesized that there is a functional complement system present in the lung that aids in the removal of pathogens. Western blot analysis revealed complement proteins of the alternative and classical pathways of complement in bronchoalveolar lavage fluids (BALF) from healthy volunteers. Functional classical pathway activity was detected in human BALF, but there was no significant alternative pathway activity in lavage fluid, a finding that correlates with the low level of the alternative pathway protein, factor B, in these samples. Although the classical pathway of complement was functional in lavage fluid, the level of the classical pathway activator C1q was very low. We tested the ability of the lung- specific surfactant proteins, surfactant protein A (SP-A) and surfactant protein D (SP-D), to substitute for C1q in classical pathway activation, since they have structural homology to C1q. However, neither SP-A nor SP-D restored classical pathway activity to C1q-depleted serum. These data suggest that the classical pathway of complement is functionally active in the lung where it may play a role in the recognition and clearance of bacteria.  相似文献   

9.
10.
11.
12.
Watts C 《Cell》2006,126(1):17-19
Activation of proteases in the phagosomes of neutrophils occurs by neutralization of the phagosomal pH by NADPH oxidase. In this issue, Savina et al. (2006) show that dendritic cell phagosomes also recruit NADPH oxidase but with different results. Here, the neutralization of phagosomal pH reduces protease activity, which preserves antigens for crosspresentation on class I MHC molecules.  相似文献   

13.
14.
15.
16.
Lactoferrin and host defense.   总被引:8,自引:0,他引:8  
Lactoferrin is a multifunctional member of the transferrin family of nonheme iron-binding glycoproteins. Lactoferrin is found at the mucosal surface where it functions as a prominent component of the first line of host defense against infection and inflammation. The protein is also an abundant component of the specific granules of neutrophils and can be released into the serum upon neutrophil degranulation. While the iron-binding properties were originally believed to be solely responsible for the host defense properties ascribed to lactoferrin, it is now known that other mechanisms contribute to the broad spectrum anti-infective and anti-inflammatory roles of this protein. In this article, current information on the functions and mechanism of action of lactoferrin are reviewed, with particular emphasis on the activities that contribute to this protein's role in host defense. In addition, studies demonstrating that lactoferrin inhibits allergen-induced skin inflammation in both mice and humans, most likely secondary to TNF-alpha (tumor necrosis factor alpha) production, are summarized. Collectively, these results suggest that lactoferrin functions as a key component of mammalian host defense at the mucosal surface.  相似文献   

17.
《Trends in parasitology》2023,39(5):345-357
Parasitic helminths are destined to share niches with a variety of microbiota that inevitably influence their interaction with the host. To modulate the microbiome for their benefit and defend against pathogenic isolates, helminths have developed host defense peptides (HDPs) and proteins as integral elements of their immunity. These often exert a relatively nonspecific membranolytic activity toward bacteria, sometimes with limited or no toxicity toward host cells. With a few exceptions, such as nematode cecropin-like peptides and antibacterial factors (ABFs), helminthic HDPs are largely underexplored. This review scrutinizes current knowledge on the repertoire of such peptides in helminths and promotes their research as potential leads for an anti-infective solution to the burgeoning problem of antibiotic resistance.  相似文献   

18.
Signaling mechanisms in the antimicrobial host defense of Drosophila   总被引:6,自引:0,他引:6  
Drosophila has appeared in recent years as a powerful model to study innate immunity. Several papers published in the past year shed light on the role of the three Rel proteins Dorsal, Dif and Relish in the regulation of antimicrobial peptide expression. In addition, the discovery that a blood serine protease inhibitor is involved in the control of the antifungal response indicates that Toll is activated upon triggering of a proteolytic cascade and does not function as a Drosophila pattern recognition receptor.  相似文献   

19.
Interferon-induced Mx proteins in antiviral host defense   总被引:7,自引:0,他引:7  
Haller O  Staeheli P  Kochs G 《Biochimie》2007,89(6-7):812-818
  相似文献   

20.
Cytokines in host defense against Salmonella.   总被引:6,自引:0,他引:6  
Cytokines are key communication molecules between host cells in the defense against the enteric pathogen, Salmonella. Infection with Salmonella induces expression of multiple chemokines and proinflammatory cytokines in cultured intestinal epithelial cells and macrophages. In animal models, protective roles have been shown for IL-1alpha, TNFalpha, IFN-gamma, IL-12, IL-18 and IL-15, whereas IL-4 and IL-10 inhibit host defenses against Salmonella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号