首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is an intercellular signaling molecule; among its many and varied roles are the control of blood flow and blood pressure via activation of the heme enzyme, soluble guanylate cyclase. A growing body of evidence suggests that an additional target for NO is the mitochondrial oxygen-consuming heme/copper enzyme, cytochrome c oxidase. This review describes the molecular mechanism of this interaction and the consequences for its likely physiological role. The oxygen reactive site in cytochrome oxidase contains both heme iron (a3) and copper (CuB) centers. NO inhibits cytochrome oxidase in both an oxygen-competitive (at heme a3) and oxygen-independent (at CuB) manner. Before inhibition of oxygen consumption, changes can be observed in enzyme and substrate (cytochrome c) redox state. Physiological consequences can be mediated either by direct "metabolic" effects on oxygen consumption or via indirect "signaling" effects via mitochondrial redox state changes and free radical production. The detailed kinetics suggest, but do not prove, that cytochrome oxidase can be a target for NO even under circumstances when guanylate cyclase, its primary high affinity target, is not fully activated. In vivo organ and whole body measures of NO synthase inhibition suggest a possible role for NO inhibition of cytochrome oxidase. However, a detailed mapping of NO and oxygen levels, combined with direct measures of cytochrome oxidase/NO binding, in physiology is still awaited. mitochondria; cytochrome oxidase  相似文献   

2.
Investigations were made of the properties of diaphorase, cytochromec reductases, cytochrome c oxidase, and other components ofelectron transfer system in various fractions of leaf homogenateof Begonia semperflorens.
  1. All the fractions tested showed the existence of cytochromec oxidase, succinic- and reduced diphosphopyridine nucleotide-cytochromec reductases, and diaphorase. Activities of these enzymes werefound to be associated mainly with the particulate fractions.The particulate fractions showed, in particular, a capacityof reducing oxidized cytochrome c with fumarate, malate, -ketoglutarate,ß-hydroxy-butyrate, and citrate.
  2. Optimum pH foroxidation of cytochrome c by the particulatefractions was foundto be 5.5, while that for reduction was7.2.
  3. The activityof cytochrome c reductase was partially suppressedby malonate.Partial inhibition of cytochrome c oxidase wascaused by azideand cyanide, the inhibitory effects observedbeing strongerwith particulate fractions than with solublefractions.
(Received August 11, 1962; )  相似文献   

3.
Two aspects of metabolic adaptation to increased terrestrialismare considered: (1) respiratory adaptations as reflected bycomparative cytochrome c oxidase activity in tissues of crabsfrom aquatic and terrestrial habitats, and (2) thermal acclimationpatterns in cytochrome c oxidase activity in tissues from thesecrabs. Enzymatic assays were done spectrophotometrically ongill, muscle, and mid-gut gland tissues from two aquatic species,Libinia emarginata and Callinectes sapidus, and the terrestrialOcypode quadrata. Cytochrome c oxidase was chosen for this studysince it is generally believed that the more aerobic the cellsor tissues become, the more fully developed the cytochrome systemwill be. This enzyme is also thought to have a role in thermalacclimation. In gill tissue the activity of cytochrome c oxidase is enhancedwith the advent of aerial respiration. Enzymatic activity ofgill tissue from Ocypode quadrata was significantly greaterthan it was in tissue from the aquatic species. No correlationwas observed with increased terrestrialism and enzymatic activityof muscle or mid-gut gland tissue. The thermal acclimation patternsof tissues of these three species of crabs indicate a clear-cuttendency for less enzymatic adaptation to temperature at thetissue level as these crabs evolve toward a land habitat.  相似文献   

4.
Yu Liu 《BBA》2007,1767(1):45-55
Formamide is a slow-onset inhibitor of mitochondrial cytochrome c oxidase that is proposed to act by blocking water movement through the protein. In the presence of formamide the redox level of mitochondrial cytochrome c oxidase evolves over the steady state as the apparent electron transfer rate from cytochrome a to cytochrome a3 slows. At maximal inhibition cytochrome a and cytochrome c are fully reduced, whereas cytochrome a3 and CuB remain fully oxidized consistent with the idea that formamide interferes with electron transfer between cytochrome a and the oxygen reaction site. However, transient kinetic studies show that intrinsic rates of electron transfer are unchanged in the formamide-inhibited enzyme. Formamide inhibition is demonstrated for another member of the heme-oxidase family, cytochrome c oxidase from Bacillus subtilis, but the onset of inhibition is much quicker than for mitochondrial oxidase. If formamide inhibition arises from a steric blockade of water exchange during catalysis then water exchange in the smaller bacterial oxidase is more open. Subunit III removal from the mitochondrial oxidase hastens the onset of formamide inhibition suggesting a role for subunit III in controlling water exchange during the cytochrome c oxidase reaction.  相似文献   

5.
The specificities for cytochrome c of the aa3-type cytochromec oxidase were studied with enzymes derived from Thiobacillusnovellas, Nitrobacter agilis, Paracoccus denitrificans and thecow in reaction with the cytochromes c from 5 prokaryotes and7 eukaryotes. The T. novellus enzyme reacted most rapidly withthe cytochromes c of Candida krusei, tuna and bonito as wellas T. novellus cytochrome c; the specificity for cytochromec of the N. agilis enzyme was similar to that of the T. novellusenzyme. The bovine enzyme reacted rapidly with all the eukaryoticcytochromes c tested. The P. denitrificans enzyme showed a specificitysimilar to that of the bovine enzyme, except that it reactedrapidly with P. denitrificans cytochrome c, while the bovineenzyme reacted with it very poorly. All four kinds of enzymesshowed an extremely limited reaction with Pseudomonas aeruginosacytochrome c. The amino acid composition of subunit I of the N. agilis enzymeresembled that of the bovine enzyme, while the compositionsof their subunits II were different. On the basis of these results,an evolutionary relationship between bacterial and eukaryoticenzymes was discussed. (Received May 21, 1981; Accepted August 20, 1981)  相似文献   

6.
Distribution of iron-containing oxidases in aging nodal rootsof rice and wheat was studied. Activities of cytochrome c oxidase(1.9.3.1 [EC] , cytochrome c : O2 oxidoreductase), catalase (1.11.1.6 [EC] ,H2O2: H2O2 oxidoreductase) and peroxidase (1.11.1.7 [EC] , donor:H2O2 oxidoreductase) in wheat roots were comparatively higherthan were those in rice roots at corresponding stages. Cytochromec oxidase in roots remained active throughout the lives of therice and wheat crops. In rice roots, catalase seemed to playa distinct role around the panicle formation stage. Decay ofcatalase activity took place earlier than did that of peroxidaseand cytochrome c oxidase activities. In wheat roots similarenzyme activity changes were not observed. Data may suggestthat the high activity of iron containing oxidases at the panicleformation stage (I) may be chiefly due to catalase activityin rice roots. 1Paper presented at the 14th Annual Meeting of the Society ofthe Science of Soil and Manure, Japan (1968). (Received November 21, 1968; )  相似文献   

7.
1. Mitochondria prepared from young Arum spadix have enoughcytochrome c oxidase to account for the rate at which succinateis oxidized, but succinoxidase activity increases markedly asthe plants mature so that in old material cytochrome oxidaseactivity is only 10 per cent, of succinoxidase. 2. Disintegration of the mitochondria by vibration with ballotini,treatment with digitonin or incubation in the warm reveals anintra-mitochondrial cytochrome c oxidase probably active enoughto account for the fastest rates of succinate oxidation. 3. Succinic dehydrogenase activity is demonstrated and experimentswith p-chloromercuribenzoate indicate that it plays a part inthe oxidation of succinate. 4. Cyanide completely inhibits both external and internal cytochromeoxidase but even at the earliest stages it only reduces succinoxidaseby about 50 per cent. Antimycin A also inhibits succinoxidaseby about 50 per cent.  相似文献   

8.
Respiratory activities, cytochrome composition and cytochromec oxidase (EC 1.9.3.1 [EC] ) subunit II (COXII) levels of isolatedmitochondria in one euplasmic and four alloplasmic lines ofwheat (Triticum aestivum), having cytoplasms of Aegilops columnaris,Ae.crassa (4x),Ae. mutica and Ae. triuncialis, which show variousgrowth abnormalities, were studied. Cytoplasm-specific variationon the respiratory activities has been revealed among the cytoplasmsof five Triticum and Aegilops species. The cyanide-resistantrespiratory pathway does not seem to contribute to the variationin activity. The low level of state 3 and cytochrome oxidaseactivities were evident in lines having Ae. columnaris and Ae.triuncialis cytoplasms, which also show growth inhibition. Thelow cytochrome oxidase activity in both cytoplasms is consistentwith the low amount of cytochrome aa3 and the severe reductionin COXII levels. The relatively low amount of cytochrome aa3in Ae. mutica is also consistent with the reduced level of theCOXII. On the other hand, relatively low amounts of cytochromeb (b-557) are found in the Ae. crassa cytoplasmic line. Theseresults suggest that the growth abnormalities found in the alloplasmicwheat lines are related to the variation in respiratory activitiesand cytochrome composition. In particular, growth inhibitionfound in the alloplasmic wheats having Ae. columnaris and Ae.triuncialis may be caused by the severe depression of respiratoryactivity due to the impaired cytochrome oxidase activity oftheir mitochondria. 3Present address: Department of Biochemistry, Dalhousie University,Halifax, NS, Canada B3H 4H7  相似文献   

9.
Sulphite-cytochrome c reductase (sulphite: ferricytochrome coxidoreductase, EC 1.8.2.1 [EC] ) derived from Thiobacillus novelluswas purified by chromatography on a DEAE-cellulose column andby gel filtration with a Sephadex G-100 column. Although thereductase thus purified moved as a single band both in gel filtrationand in isoelectric focusing it was always split into two bandsby polyacrylamide gel electrophoresis; the one had the enzymaticactivity and showed absorption spectrum of cytochrome, whilethe other had no activity and was colourless, in contrast withthe results reported by Charles and Suzuki [(1966) Biochim.Biophys. Acta 128: 522]. The enzymatic properties of the purifiedreductase were almost the same as those of the enzyme obtainedby Charles and Suzuki. Cytochrome c-551 free of the reductase activity was obtained.Its molecular weight was determined to be 23,000 by polyacrylamidegel electrophoresis in the presence of sodium dodecyl sulphate.The cytochrome seemed to exist in the organism as a complexwith the reductase or a subunit of the enzyme. In the stateof the complex with the enzyme, the cytochrome was reduced veryquickly on addition of sulphite, while the cytochrome free ofthe reductase activity was hardly reduced by the enzyme withsulphite. A sulphite oxidase system was reconstituted with the reductase,cytochrome c-550 and cytochrome oxidase highly purified fromthe bacterium. 1 Present address: Water Research Institute, Nagoya University,Nagoya 464, Japan 2 Present address: Institute for Biological Science, SumitomoChemical Co., Ltd., Takarazuka, Hyogo 665, Japan (Received January 23, 1981; Accepted March 9, 1981)  相似文献   

10.
Cytochromec-mediated activation of caspase-3 is the final commonpathway for most signals that induce apoptosis. Before release of cytochrome c from mitochondria, K+ andCl efflux and intracellular acidification must occur. Wehave utilized an in vitro assay to examine the role of pH, cations,anions, and uncharged molecules on the process of cytochromec-mediated activation of procaspase-3. In this cell-freesystem, a pH above 7.4 severely suppressed the activation ofprocaspase-3 but not the activity of caspase-3. KCl, NaCl, and othersalts all inhibited caspase activation, but uncharged molecules didnot. Comparison of the inhibitory capacity of various salts suggeststhat the crucial element in causing suppression is the cation. Theinhibition of alkaline pH could be overcome by increasingconcentrations of cytochrome c, whereas the inhibition ofionic charge could not, suggesting that pH and salts affect theactivation of caspase-3 by different mechanisms.

  相似文献   

11.
Nitrobacter agilis cytochrome c-550 was purified to an electrophoreticallyhomogeneous state, and some of its properties were determined.The cytochrome showed an absorption peak at 410 nm in the oxidizedform, and peaks at 416, 521 and 550 nm in the reduced form.Its isoelectric point was 8.1 at 5?C. Analysis of the aminoacid composition showed that the cytochrome molecule was composedof 108 amino acid residues, 16 of which were lysine residues. The cytochrome reacted rapidly with N. agilis cytochrome c oxidaseand yeast cytochrome c peroxidase and more slowly with Pseudomonasaeruginosa nitrite reductase and bovine cytochrome c oxidase.The reactivities with these redox enzymes suggested that thecytochrome might be an evolutionary stage between bacterialand eukaryotic cytochromes c. The primary structure of the cytochrome from the N-terminusto the 85th residue was determined. The N-terminal sequencewas homologous to the corresponding portion of the primary structureof horse cytochrome c. 1 Present adress: Department of Chemistry, Faculty of Science,Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo,152, Japan. (Received December 3, 1981; Accepted January 28, 1982)  相似文献   

12.
Bovine heart cytochrome c oxidase and rat liver mitochondria were crosslinked in the presence and absence of cytochrome c. Biimidate treatment of purified cytochrome oxidase, which results in the crosslinkage of all of the oxidase protomers except subunit I when ? 20% of the free amines are modified, inhibits ascorbate-N,N,N′,N′-tetramethyl-p-phenylene diamine oxidase activity. Intermolecular crosslinking of cytochrome oxidase molecules, which results in the formation of large enzyme aggregates displaying rotational correlation times ? 1 ms, does not affect oxidase activity. Crosslinking of mitochondria covalently binds the cytochrome bc1 and aa3 complexes to cytochrome c, and inhibits steady-state oxidase activity. Addition of cytochrome c to purified cytochrome oxidase or to cytochrome c-depleted mitoplasts increases this inhibition slightly. Cytochrome c oligomers act as competitive inhibitors of native cytochrome c; however, crosslinking of cytochrome c to cytochrome c-depleted mitoplasts or purified cytochrome oxidase results in a catalytically inactive complex. These experiments indicate that cytochrome c oxidase subunit interactions are required for activity, and that cytochrome c mobility may be essential for electron transport between cytochrome c reductase and oxidase.  相似文献   

13.
Purified chromatophore membranes and spheroplast membrane vesicleswere prepared from Rhodopseudomonas sphaeroides by the methodof Michels and Konings (1978). The cytochrome c oxidase activityof the spheroplast membrane vesicles was about 15-fold higheron a bacteriochlorophyll basis than that of the chromatophoremembranes. The cytochrome c oxidase activity of the chromatophoremembranes was greatly stimulated (about 10-fold) by an additionof Triton X-100 (0.1%), but there was less stimulated (about1.5-fold) in the case of spheroplasts. The pH optimum of theoxidase activities of the spheroplast membrane vesicles andof chromatophore membranes treated with 0.1% Triton X-100, andthe salt dependencies of the activity of both preparations werethe same. These results show that the membrane-bound b-type cytochromeoxidase of this bacterium accepts electrons from ferrocytochromec on the periplasmic side of the membrane (on the outer surfaceof the spheroplast membrane vesicles). These results also areconsistent with the fact that cytochrome c2 is located in theperiplasmic space in this bacterium. (Received January 24, 1984; Accepted April 24, 1984)  相似文献   

14.
Cytochrome b561 from Rhodopseudomonas sphaeroides had cytochromec (c2) oxidase activity and a pH optimum at 6.0 for this activity.The activity was affected by the ionic strength of the reactionmixture. The apparent Km and maximal velocity (Vmax) valuesin the absence of addea salts were 14 µM and 120 nmoloxidized per min per mg protein for horse heart cytochrome c.Reduced horse heart cytochrome c was reoxidized in first-orderkinetics by this cytochrome b561. The specific activity was0.7 s–1 per mg protein at 20°C at the concentrationof 30 µMM cytochrome c. Activity was inhibited by KCN and NaN3, but not by antimycin.The addition of a low concentration of KCN to the cytochromeb561 produced a change in the absorption spectrum, evidencethat KCN interacts with the heme moiety of cytochrome b561.Results of this and preceeding studies show that the cytochromeoxidase (cytochrome "o") described earlier (Sasaki et al. 1970)is cytochrome b561. (Received May 16, 1983; Accepted September 8, 1983)  相似文献   

15.
The electron transfer activity of an aa3-type two-subunit cytochromec oxidase of Nitrobacter agilis was inhibited by DCCD. Althoughthe activity of the purified cytochrome c oxidase dissolvedin 1% Triton X- 100 was not affected by DCCD even at a ratioof 1,000 mol DCCD per mol cytochrome aa3, the activity of theenzyme dissolved in 0.02% Tween 20 or 0.02% Triton X-100 wasinhibited by 60% or more at a ratio of 1,000 mol DCCD per molcytochrome aa3. The results of SDS polyacrylamide gel electrophoresisof the enzyme incubated with DCCD suggested that subunit IImight be a binding site for DCCD. (Received February 23, 1985; Accepted April 23, 1985)  相似文献   

16.
Cytochrome c-554 was purified from Spirulina platensis and someof its properties were studied. The cytochrome shows absorptionpeaks at 354, 410 and 529 nm in the oxidized form and at 318,416, 523 and 553.6 nm in the reduced form. The a peak at 553.6nm is slightly asymmetric with a shoulder around 550 nm. Theisoelectric point, midpoint redox potential and molecular weightof the cytochrome are 4.9, +0.35 V and 10,000, respectively.The cytochrome reacts fairly rapidly with Pseudomonas aeruginosanitrite reductase but does not react with cow cytochrome oxidase.The reactivities with the two enzymes of the S. platensis cytochromehave been compared with those of other algal c-type cytochromes. (Received August 22, 1977; )  相似文献   

17.
SYNOPSIS.Mitochondrial ATP production is influenced by manyfactors, including the adenylate status of the cell, the supplyof reducing equivalents to the electron transport chain, thesupply of oxygen to cytochrome oxidase, and the demand for ATPto do cellular work. Hydrogen sulfide, which is naturally producedin marine sediments, is a poison of aerobic ATP production mainlybecause it inhibits cytochrome oxidase in the electron transportchain. However, most animals from high sulfide environmentsexhibit aerobic respiration, and may avoid sulfide poisoningwith detoxification reactions that may be useful sources ofenergy. Sulfide stimulates ADP phosphorylation in mitochondriaisolated from gills of Solemya reidi, a sulfide-oxidizing symbiont-harboringbivalve, and a P/O ratio near unity indicates that electronsfrom sulfide enter the electron transport chain at the levelof cytochrome c. Current investigations into the effects ofsulfide on oxygen consumption rate, ATP level, cytochrome reductionstate and ciliary beat frequency of symbiont-free gills of themussels Geukensia demissa and Mytilus edulis indicate that animalsfrom high sulfide environments may gain sufficient energy fromsulfide oxidation to support cellular work.  相似文献   

18.
Growth of Thiobacillus ferrooxidans on iron- and sulfur-salts media and iron oxidizing activity of this bacterium were strongly inhibited by bisulfite ion. The mechanism of inhibition by bisulfite ion of iron-oxidizing activity was studied with the plasma membrane of T. ferrooxidans AP19-3. The c-type cytochrome in the plasma membrane was reduced by ferrous ion and the cytochrome reduced by Fe2+ was oxidized by cytochrome c oxidase in the plasma membrane. In contrast, c-type cytochrome was reduced by bisulfite ion, but it was not oxidized by cytochrome c oxidase in the membrane. Cytochrome c-oxidizing activity was also inhibited by the ion when mammalian cytochrome c was used as an electron donor, suggesting that cytochrome c oxidase, one of the component of iron oxidase, is the site of inhibition by bisulfite ion.  相似文献   

19.
Cytochromes in a cultured cells of the mycobiont of Cladoniavulcani Sav. were studied, b-and c-type cytochromes and aa3-typecytochrome c oxidase were found in the membrane fraction, whileb- and c-type cytochromes were found in the soluble fraction.Soluble cytochrome c-549.5 was purified, and some of its molecularproperties were determined. (Received June 27, 1994; Accepted October 3, 1994)  相似文献   

20.
Effects of cytochrome c on the mitochondrial apoptosis-induced channel MAC   总被引:3,自引:0,他引:3  
Recent studies indicate that cytochrome c is released early in apoptosis without loss of integrity of the mitochondrial outer membrane in some cell types. The high-conductance mitochondrial apoptosis-induced channel (MAC) forms in the outer membrane early in apoptosis of FL5.12 cells. Physiological (micromolar) levels of cytochrome c alter MAC activity, and these effects are referred to as types 1 and 2. Type 1 effects are consistent with a partitioning of cytochrome c into the pore of MAC and include a modest decrease in conductance that is dose and voltage dependent, reversible, and has an increase in noise. Type 2 effects may correspond to "plugging" of the pore or destabilization of the open state. Type 2 effects are a dose-dependent, voltage-independent, and irreversible decrease in conductance. MAC is a heterogeneous channel with variable conductance. Cytochrome c affects MAC in a pore size-dependent manner, with maximal effects of cytochrome c on MAC with conductance of 1.9–5.4 nS. The effects of cytochrome c, RNase A, and high salt on MAC indicate that size, rather than charge, is crucial. The effects of dextran molecules of various sizes indicate that the pore diameter of MAC is slightly larger than that of 17-kDa dextran, which should be sufficient to allow the passage of 12-kDa cytochrome c. These findings are consistent with the notion that MAC is the pore through which cytochrome c is released from mitochondria during apoptosis. patch clamp; ion channels  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号