首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DRAM, a p53-induced modulator of autophagy, is critical for apoptosis   总被引:23,自引:0,他引:23  
Inactivation of cell death is a major step in tumor development, and p53, a tumor suppressor frequently mutated in cancer, is a critical mediator of cell death. While a role for p53 in apoptosis is well established, direct links to other pathways controlling cell death are unknown. Here we describe DRAM (damage-regulated autophagy modulator), a p53 target gene encoding a lysosomal protein that induces macroautophagy, as an effector of p53-mediated death. We show that p53 induces autophagy in a DRAM-dependent manner and, while overexpression of DRAM alone causes minimal cell death, DRAM is essential for p53-mediated apoptosis. Moreover, analysis of DRAM in primary tumors revealed frequent decreased expression often accompanied by retention of wild-type p53. Collectively therefore, these studies not only report a stress-induced regulator of autophagy but also highlight the relationship of DRAM and autophagy to p53 function and damage-induced programmed cell death.  相似文献   

2.
3.
4.
Autophagy is a membrane-trafficking process that serves to deliver cytoplasmic proteins and organelles to the lysosome for degradation. The process is genetically defined and many of the factors involved are conserved from yeast to man. Recently, a number of new autophagy regulators have been defined, including the Damage-Regulated Autophagy Modulator (DRAM), which is a lysosomal protein that links autophagy and the tumor suppressor, p53. We describe here analysis of DRAM-related proteins which reveals evolutionary conservation and divergence of DRAM’s role in autophagy. We report that humans have 5 other proteins that show significant homology to DRAM. The closest of these, which we have termed DRAM2, displays 45% identity and 67% conservation when compared to DRAM. Interestingly, although similar to DRAM in terms of homology, DRAM2 is different from DRAM as it not induced by p53 or p73. DRAM2 is also a lysosomal protein, but again unlike DRAM its over-expression does not modulate autophagy. In contrast to humans, the Drosophila genome only encodes one DRAM-like protein, which is approximately equal in similarity to human DRAM and DRAM2. This questions, therefore, whether DRAM function is conserved from fly to man or whether DRAM’s capacity to regulate autophagy has evolved in higher eukaryotes. Expression of DmDRAM, however, clearly revealed an ability to modulate autophagy. This points, therefore, to a conserved role of DRAM in this process and that additional human proteins have more recently evolved which, while potentially sharing some similarities to DRAM function, may not be as intrinsically connected to autophagy regulation.  相似文献   

5.
Autophagy is a membrane trafficking process involved in intracellular degradation and recycling in eukaryotic cells. DRAM2 (damage-regulated autophagy modulator 2) is a homologue of DRAM that regulates p53-mediated cell death. As its name implies, DRAM expression induces autophagy in a p53-dependent manner; however, the role of DRAM2 in autophagy is not clear. In this study, we report that DRAM2 expression contributes to autophagy induction. Overexpression of DRAM2 induces cytoplasmic GFP-LC3 punctuates, and increases the level of endogenous LC3-II. Moreover, the silencing of endogenous DRAM2 interferes with starvation-induced autophagy. Thus, we propose that DRAM2 as well as DRAM are involved in autophagy.  相似文献   

6.
7.
ik3-1/Cables is associated with cdk3 in self-replicating cells. In postmitotic neurons, it may serve as an adaptor molecule, functionally connecting c-abl and cdk5, and supporting neurite growth. Here we report that ik3-1 binds to p53 and p73 in vivo. Ectopically expressed ik3-1 potentiates p53-induced cell death but not p73-induced cell death in U2OS cells. On the contrary, coexpression of ik3-1-DeltaC, an ik3-1 deletion mutant lacking the C-terminal 139 [corrected] amino acids (corresponding to the cyclin box-homologous region), inhibits p73-induced cell death but not p53-induced cell death. ik3-1-DeltaC-mediated inhibition of p73-induced cell death are partially attenuated by overexpression of ik3-1. These data indicate that ik3-1 is not only a regulator for p53-induced cell death but also an essential regulator for p73-induced cell death, and ik3-1-DeltaC competes with ik3-1 only in p73-induced cell death. Furthermore, functional domains of p53 responsible for its interaction with ik3-1 are partially different from those of p73. In conclusion, we found that ik3-1, a putative component of cell cycle regulation, is functionally connected with p53 and p73, but in distinct fashions.  相似文献   

8.
Although the role of autophagy in tumorigenesis remains controversial, recent reports support the notion that inhibition of autophagy promotes tumor formation. Damage-regulated autophagy regulator (DRAM) has been identified as an effector molecule that is critical for p53-mediated apoptosis, and we investigated whether there might be other DRAM-like molecules linking autophagy and apoptosis. In this study, we cloned a novel DRAM-homologous protein, DRAM2, and showed that the expression of DRAM2 is down-regulated in ovarian tumors. DRAM2 is mainly localized in the lysosome, and co-localizes with DRAM. While expression of DRAM or DRAM2 individually did not induce cell death, co-expression of DRAM2 with DRAM significantly induced cell death, while the silencing of endogenous DRAM2 attenuated cell death, suggesting that DRAM2 is involved in cell death. Thus, we propose that reduced expression of DRAM2 may contribute to enhanced cell survival in tumor cells.  相似文献   

9.
10.
p53凋亡刺激蛋白2(apoptosis stimulating protein 2 of p53, ASPP2)能特异性地与p53蛋白结合并增强其促凋亡的功能,进而发挥抗肿瘤作用. 本室前期研究发现,ASPP2可以通过p53-DRAM自噬途径诱导细胞凋亡. 在本研究中,利用ASPP2 腺病毒感染Hep3B细胞(p53缺陷型肝癌细胞系)并用甲基磺酸(MMS)处理后; Calcein AM/PI和M30染色检测细胞凋亡;GFP-LC3质粒转染细胞后检测自噬; 荧光定量PCR和免疫印迹检测自噬基因表达. 结果表明,ASPP2在p53缺陷的Hep3B细胞内可诱导发生凋亡;在MMS存在和缺失条件下, Adr-ASPP2均引起自噬体水平升高及自噬基因的表达增 加,且MMS协同Adr-ASPP2能使自噬水平增加; 进一步用VPS34 siRNA和DRAM siRNA抑 制自噬发现,细胞凋亡水平下降, 说明由Adr-ASPP2诱发经损伤相关自噬调节蛋白( DRAM)介导的自噬参与了肝癌细胞系凋亡的发生. 综上结果表明,ASPP2可以通过非p53依赖的DRAM介导自噬,并促进肝癌细胞凋亡. 该研究可为肝癌的基因治疗提供新的思路.  相似文献   

11.
p73, an important developmental gene, shares a high sequence homology with p53 and induces both G(1) cell cycle arrest and apoptosis. However, the molecular mechanisms through which p73 induces apoptosis are unclear. We found that p73-induced apoptosis is mediated by PUMA (p53 up-regulated modulator of apoptosis) induction, which, in turn, causes Bax mitochondrial translocation and cytochrome c release. Overexpression of p73 isoforms promotes cell death and bax promoter transactivation in a time-dependent manner. However, the kinetics of apoptosis do not correlate with the increase of Bax protein levels. Instead, p73-induced mitochondrial translocation of Bax is kinetically compatible with the induction of cell death. p73 is localized in the nucleus and remains nuclear during the induction of cell death, indicating that the effect of p73 on Bax translocation is indirect. The ability of p73 to directly transactivate PUMA and the direct effect of PUMA on Bax conformation and mitochondrial relocalization suggest a molecular link between p73 and the mitochondrial apoptotic pathway. Our data therefore indicate that PUMA-mediated Bax mitochondrial translocation, rather than its direct transactivation, correlates with cell death. Finally, human DeltaNp73, an isoform lacking the amino-terminal transactivation domain, inhibits TAp73-induced as well as p53-induced apoptosis. The DeltaNp73 isoforms seem therefore to act as dominant negatives, repressing the PUMA/Bax system and, thus, finely tuning p73-induced apoptosis. Our findings demonstrate that p73 elicits apoptosis via the mitochondrial pathway using PUMA and Bax as mediators.  相似文献   

12.
Death-associated protein kinase (DAPk) and DAPk-related protein kinase (DRP)-1 proteins are Ca+2/calmodulin-regulated Ser/Thr death kinases whose precise roles in programmed cell death are still mostly unknown. In this study, we dissected the subcellular events in which these kinases are involved during cell death. Expression of each of these DAPk subfamily members in their activated forms triggered two major cytoplasmic events: membrane blebbing, characteristic of several types of cell death, and extensive autophagy, which is typical of autophagic (type II) programmed cell death. These two different cellular outcomes were totally independent of caspase activity. It was also found that dominant negative mutants of DAPk or DRP-1 reduced membrane blebbing during the p55/tumor necrosis factor receptor 1-induced type I apoptosis but did not prevent nuclear fragmentation. In addition, expression of the dominant negative mutant of DRP-1 or of DAPk antisense mRNA reduced autophagy induced by antiestrogens, amino acid starvation, or administration of interferon-gamma. Thus, both endogenous DAPk and DRP-1 possess rate-limiting functions in these two distinct cytoplasmic events. Finally, immunogold staining showed that DRP-1 is localized inside the autophagic vesicles, suggesting a direct involvement of this kinase in the process of autophagy.  相似文献   

13.
The p53 family includes three members that share significant sequence homology, yet exhibit fundamentally different functions in tumorigenesis. Whereas p53 displays all characteristics of a classical tumor suppressor, its homologues p63 and p73 do not. We have previously shown, that NH(2)-terminally truncated isoforms of p73 (Delta TA-p73), which act as dominant-negative inhibitors of p53 are frequently overexpressed in cancer cells. Here we provide evidence that Delta TA-p73 isoforms also affect the retinoblastoma protein (RB) tumor suppressor pathway independent of p53. Delta TA-p73 isoforms inactivate RB by increased phosphorylation, resulting in enhanced E2F activity and proliferation of fibroblasts. By inactivating the two major tumor suppressor pathways in human cells they act functionally analogous to several viral oncoproteins. These findings provide an explanation for the fundamentally different functions of p53 and p73 in tumorigenesis.  相似文献   

14.
15.
Statins inhibit the proximal steps of cholesterol biosynthesis, and are linked to health benefits in various conditions, including cancer and lung disease. We have previously investigated apoptotic pathways triggered by statins in airway mesenchymal cells, and identified reduced prenylation of small GTPases as a primary effector mechanism leading to p53-mediated cell death. Here, we extend our studies of statin-induced cell death by assessing endpoints of both apoptosis and autophagy, and investigating their interplay and coincident regulation. Using primary cultured human airway smooth muscle (HASM) and human airway fibroblasts (HAF), autophagy, and autophagosome formation and flux were assessed by transmission electron microscopy, cytochemistry (lysosome number and co-localization with LC3) and immunoblotting (LC3 lipidation and Atg12-5 complex formation). Chemical inhibition of autophagy increased simvastatin-induced caspase activation and cell death. Similarly, Atg5 silencing with shRNA, thus preventing Atg5-12 complex formation, increased pro-apoptotic effects of simvastatin. Simvastatin concomitantly increased p53-dependent expression of p53 up-regulated modulator of apoptosis (PUMA), NOXA, and damage-regulated autophagy modulator (DRAM). Notably both mevalonate cascade inhibition-induced autophagy and apoptosis were p53 dependent: simvastatin increased nuclear p53 accumulation, and both cyclic pifithrin-α and p53 shRNAi partially inhibited NOXA, PUMA expression and caspase-3/7 cleavage (apoptosis) and DRAM expression, Atg5-12 complex formation, LC3 lipidation, and autophagosome formation (autophagy). Furthermore, the autophagy response is induced rapidly, significantly delaying apoptosis, suggesting the existence of a temporally coordinated p53 regulation network. These findings are relevant for the development of statin-based therapeutic approaches in obstructive airway disease.  相似文献   

16.
《Autophagy》2013,9(3):339-350
In vivo administration of the mitochondrial inhibitor 3-nitropropionic acid (3-NP) produces striatal pathology mimicking Huntington disease (HD). However, the mechanisms of cell death induced by metabolic impairment are not fully understood. The present study investigated contributions of p53 signaling pathway to autophagy activation and cell death induced by 3-NP. Rat striatum was intoxicated with 3-NP by stereotaxic injection. Morphological and biochemical analyses demonstrated activation of autophagy in striatal cells as evidenced by increased the formation of autophagosomes, the expression of active lysosomal cathepsin B and D, microtubule associate protein light chain 3 (LC3) and conversion of LC3-I to LC3-II. 3-NP upregulated the expression of tumor suppressor protein 53 (p53) and its target genes including Bax, p53-upregulated modulator of apoptosis (PUMA) and damage-regulated autophagy modulator (DRAM). 3-NP-induced elevations in pro-apoptotic proteins Bax and PUMA, autophagic proteins LC3-II and DRAM were significantly reduced by the p53 specific inhibitor pifithrin-α (PFT). PFT also significantly inhibited 3-NP-induced striatal damage. Similarly, 3-NP-induced DNA fragmentation and striatal cell death were robustly attenuated by the autophagy inhibitor 3-methyladenine (3-MA) and bafilomycin A1 (BFA). These results suggest that p53 plays roles in signaling both autophagy and apoptosis. Autophagy, at least partially, contributes to neurodegeneration induced by mitochondria dysfunction.  相似文献   

17.
《Autophagy》2013,9(1):153-154
p53 and JNK are two apoptosis-regulatory factors frequently deregulated in cancer cells and also involved in the modulation of autophagy. We have recently investigated the links between these two signalling pathways in terms of the regulation of autophagy. We showed that 2-methoxyestradiol (2-ME), an antitumoral compound, enhances autophagy and apoptosis in Ewing sarcoma cells through the activation of both p53 and JNK pathways. In this context, p53 regulates, at least partially, JNK activation which in turn modulates autophagy through two distinct mechanisms: on the one hand it promotes Bcl-2 phosphorylation resulting in the dissociation of the Beclin 1-Bcl-2 complex and on the other hand it leads to the upregulation of DRAM (Damage-Regulated Autophagy Modulator), a p53 target gene. The critical role of DRAM in 2-ME–mediated autophagy and apoptosis is underlined by the fact that its silencing efficiently prevents the induction of both processes. These findings not only report the interplay between JNK and p53 in the regulation of autophagy but also uncover the role of JNK activation in the regulation of DRAM, a pro-autophagic and pro-apoptotic protein.  相似文献   

18.
DRAM-1 encodes multiple isoforms that regulate autophagy   总被引:1,自引:0,他引:1  
  相似文献   

19.
《Autophagy》2013,9(2):85-90
Autophagy is a dynamic process of protein degradation which is typically observed during nutrient deprivation. Recently, interest in autophagy has been renewed among oncologists, because different types of cancer cells undergo autophagy after various anticancer therapies. This type of non-apoptotic cell death has been documented mainly by observing morphological changes, e.g., numerous autophagic vacuoles in the cytoplasm of dying cells. Thus, autophagic cell death is considered programmed cell death type II, whereas apoptosis is programmed cell death type I. These two types of cell death are predominantly distinctive, but many studies demonstrate cross-talk between them. Whether autophagy in cancer cells causes death or protects cells is controversial. In multiple studies, autophagy has been inhibited pharmacologically or genetically, resulting in contrasting outcomes—survival or death—depending on the specific context. Interestingly, the regulatory pathways of autophagy share several molecules with the oncogenic pathways activated by tyrosine kinase receptors. Tumor suppressors such as Beclin 1, PTEN, and p53 also play an important role in autophagy induction. Taken together, these accumulating data may lead to development of new cancer therapies that manipulate autophagy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号