首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathway for phycocyanobilin biosynthesis in Synechococcus sp. strain PCC 7002 comprises two enzymes: heme oxygenase and phycocyanobilin synthase (PcyA). The phycobilin content of cells can be modified by overexpressing genes encoding alternative enzymes for biliverdin reduction. Overexpression of the pebAB and HY2 genes, encoding alternative ferredoxin-dependent biliverdin reductases, caused unique effects due to the overproduction of phycoerythrobilin and phytochromobilin, respectively. Colonies overexpressing pebAB became reddish brown and visually resembled strains that naturally produce phycoerythrin. This was almost exclusively due to the replacement of phycocyanobilin by phycoerythrobilin on the phycocyanin α-subunit. This phenotype was unstable, and such strains rapidly reverted to the wild-type appearance, presumably due to strong selective pressure to inactivate pebAB expression. Overproduction of phytochromobilin, synthesized by the Arabidopsis thaliana HY2 product, was tolerated much better. Cells overexpressing HY2 were only slightly less pigmented and blue-green than the wild type. Although the pcyA gene could not be inactivated in the wild type, pcyA was easily inactivated when cells expressed HY2. These results indicate that phytochromobilin can functionally substitute for phycocyanobilin in Synechococcus sp. strain PCC 7002. Although functional phycobilisomes were assembled in this strain, the overall phycobiliprotein content of cells was lower, the efficiency of energy transfer by these phycobilisomes was lower than for wild-type phycobilisomes, and the absorption cross-section of the cells was reduced relative to that of the wild type because of an increased spectral overlap of the modified phycobiliproteins with chlorophyll a. As a result, the strain producing phycobiliproteins carrying phytochromobilin grew much more slowly at low light intensity.  相似文献   

2.
14C-labelled biliverdin IX alpha was administered to cultures of Cyanidium caldarium that were actively synthesizing photosynthetic pigments in the light. Between 9 and 12% of the phycobiliprotein chromophore produced in such cultures was derived from exogenous biliverdin. These results demonstrate that biliverdin is an intermediate in the biosynthesis of phycobiliproteins.  相似文献   

3.
Parks BM  Quail PH 《The Plant cell》1991,3(11):1177-1186
The hy1 and hy2 long hypocotyl mutants of Arabidopsis contain normal levels of immunochemically detectable phytochrome A, but the molecule is photochemically nonfunctional. We have investigated the biochemical basis for this lack of function. When the hy1 and hy2 mutants were grown in white light on a medium containing biliverdin IX[alpha], a direct precursor to phytochromobilin, the phytochrome chromophore, the seedlings developed with a morphological phenotype indistinguishable from the light-grown wild-type control. Restoration of a light-grown phenotype in the hy1 mutant was also accomplished by using phycocyanobilin, a tetrapyrrole analog of phytochromobilin. Spectrophotometric and immunochemical analyses of the rescued hy1 and hy2 mutants demonstrated that they possessed wild-type levels of photochemically functional phytochrome that displayed light-induced conformational changes in the holoprotein indistinguishable from the wild type. Moreover, phytochrome A levels declined in vivo in response to white light in rescued hy1 and hy2 seedlings, indicative of biliverdin-dependent formation of photochemically functional phytochrome A that was then subject to normal selective turnover in the far-red-light-absorbing form. Combined, these data suggest that the hy1 and hy2 mutants are inhibited in chromophore biosynthesis at steps prior to the formation of biliverdin IX[alpha], thus potentially causing a global functional deficiency in all members of the phytochrome photoreceptor family.  相似文献   

4.
Utilizing an in vitro coupled assay system, we show that isolated plastids from cucumber cotyledons convert the linear tetrapyrrole biliverdin IX alpha to the free phytochrome chromophore, phytochromobilin, which assembles with oat apophytochrome to yield photoactive holoprotein. The spectral properties of this synthetic phytochrome are indistinguishable from those of the natural photoreceptor. The plastid-dependent biliverdin conversion activity is strongly stimulated by both NADPH and ATP. Substitution of the nonnatural XIII alpha isomer of biliverdin for the IX alpha isomer affords a synthetic holophytochrome adduct with blue-shifted difference spectra. These results, together with experiments using boiled plastids, indicate that phytochromobilin synthesis from biliverdin is enzyme-mediated. Experiments where NADPH (and ATP) levels in intact developing chloroplasts are manipulated by feeding the metabolites 3-phosphoglycerate, dihydroxyacetone phosphate, and glucose 6-phosphate or by illumination with white light, support the hypothesis that the enzyme that accomplishes this conversion, phytochromobilin synthase, is plastid-localized. It is therefore likely that all of the enzymes of the phytochrome chromophore biosynthetic pathway reside in the plastid.  相似文献   

5.
In cyanobacteria, the biosynthesis of the phycobiliprotein and phytochrome chromophore precursor phycocyanobilin is catalyzed by the ferredoxin-dependent enzyme phycocyanobilin:ferredoxin oxidoreductase (PcyA), which mediates an atypical four-electron reduction of biliverdin IXalpha. Here we describe the expression, affinity purification, and biochemical characterization of recombinant PcyA from Anabaena sp. PCC 7120. A monomeric protein with a native M(r) of 30,400 +/- 5,000, recombinant PcyA forms a tight and stable stoichiometric complex with its substrate biliverdin IXalpha. The enzyme exhibits a strong preference for plant type [2Fe-2S] ferredoxins; however, flavodoxin can also serve as an electron donor. HPLC analyses establish that catalysis proceeds via the two electron-reduced intermediate 18(1),18(2)-dihydrobiliverdin, indicating that exovinyl reduction precedes A-ring (endovinyl) reduction. Substrate specificity studies indicate that the arrangement of the A- and D-ring substituents alters the positioning of the bilin substrate within the enzyme, profoundly influencing the course of catalysis. Based on these observations and the apparent lack of a metal or small molecule cofactor, a radical mechanism for biliverdin IXalpha reduction by phycocyanobilin:ferredoxin oxidoreductase is envisaged.  相似文献   

6.
Storf M  Parbel A  Meyer M  Strohmann B  Scheer H  Deng MG  Zheng M  Zhou M  Zhao KH 《Biochemistry》2001,40(41):12444-12456
PecE and PecF, the products of two phycoerythrocyanin lyase genes (pecE and pecF) of Mastigocladus laminosus (Fischerella), catalyze two reactions: (1) the regiospecific addition of phycocyanobilin (PCB) to Cys-alpha 84 of the phycoerythrocyanin alpha-subunit (PecA), and (2) the Delta 4-->Delta 2 isomerization of the PCB to the phycoviolobilin (PVB)-chromophore [Zhao et al. (2000) FEBS Lett. 469, 9-13]. The alpha-apoprotein (PecA) as well PecE and PecF were overexpressed from two strains of M. laminosus, with and without His-tags. The products of the spontaneous addition of PCB to PecA, and that of the reaction catalyzed by PecE/F, were characterized by their photochemistry and by absorption, fluorescence, circular dichroism of the four states obtained by irradiation with light (15-Z/E isomers of the chromophore) and/or modification of Cys-alpha 98/99 with thiol-directed reagents. The spontaneous addition leads to a 3(1)-Cys-PCB adduct, which is characteristic of allophycocyanins and phycocyanins, while the addition catalyzed by PecE and PecF leads to a 3(1)-Cys-PVB adduct which after purification was identical to alpha-PEC. The specificity and kinetics of the chromophore additions were investigated with respect to the structure of the bilin substrate: The 3-ethylidene-bilins, viz., PCB, its 18-vinyl analogue phytochromobilin, phycoerythrobilin and its dimethylester, react spontaneously to yield the conventional addition products (3-H, 3(1)-Cys), while the 3-vinyl-substituted bilins, viz., bilirubin and biliverdin, were inactive. Only phycocyanobilin and phytochromobilin are substrates to the addition-isomerization reaction catalyzed by PecE/F. The slow spontaneous addition of phycoerythrobilin is not influenced, and there is in particular no catalyzed isomerization to urobilin.  相似文献   

7.
By co-expression of heme oxygenase and various bilin reductase(s) in a single operon in conjunction with apophytochrome using two compatible plasmids, we developed a system to produce phytochromes with various chromophores in Escherichia coli. Through the selection of different bilin reductases, apophytochromes were assembled with phytochromobilin, phycocyanobilin, and phycoerythrobilin. The blue-shifted difference spectra of truncated phytochromes were observed with a phycocyanobilin chromophore compared to a phytochromobilin chromophore. When the phycoerythrobilin biosynthetic enzymes were co-expressed, E. coli cells accumulated orange-fluorescent phytochrome. The metabolic engineering of bacteria for the production of various bilins for assembly into phytochromes will facilitate the molecular analysis of photoreceptors.  相似文献   

8.
We isolated a new pea mutant that was selected on the basis of pale color and elongated internodes in a screen under white light. The mutant was designated pcd1 for phytochrome chromophore deficient. Light-grown pcd1 plants have yellow-green foliage with a reduced chlorophyll (Chl) content and an abnormally high Chl a/Chl b ratio. Etiolated pcd1 seedlings are developmentally insensitive to far-red light, show a reduced response to red light, and have no spectrophotometrically detectable phytochrome. The phytochrome A apoprotein is present at the wild-type level in etiolated pcd1 seedlings but is not depleted by red light treatment. Crude phytochrome preparations from etiolated pcd1 tissue also lack spectral activity but can be assembled with phycocyanobilin, an analog of the endogenous phytochrome chromophore phytochromobilin, to yield a difference spectrum characteristic of an apophytochrome-phycocyanobilin adduct. These results indicate that the pcd1-conferred phenotype results from a deficiency in phytochrome chromophore synthesis. Furthermore, etioplast preparations from pcd1 seedlings can metabolize biliverdin (BV) IX[alpha] but not heme to phytochromobilin, indicating that pcd1 plants are severely impaired in their ability to convert heme to BV IX[alpha]. This provides clear evidence that the conversion of heme to BV IX[alpha] is an enzymatic process in higher plants and that it is required for synthesis of the phytochrome chromophore and hence for normal photomorphogenesis.  相似文献   

9.
Phytobilins are linear tetrapyrrole precursors of the light-harvesting prosthetic groups of the phytochrome photoreceptors of plants and the phycobiliprotein photosynthetic antennae of cyanobacteria, red algae, and cryptomonads. Previous biochemical studies have established that phytobilins are synthesized from heme via the intermediacy of biliverdin IX alpha (BV), which is reduced subsequently by ferredoxin-dependent bilin reductases with different double-bond specificities. By exploiting the sequence of phytochromobilin synthase (HY2) of Arabidopsis, an enzyme that catalyzes the ferredoxin-dependent conversion of BV to the phytochrome chromophore precursor phytochromobilin, genes encoding putative bilin reductases were identified in the genomes of various cyanobacteria, oxyphotobacteria, and plants. Phylogenetic analyses resolved four classes of HY2-related genes, one of which encodes red chlorophyll catabolite reductases, which are bilin reductases involved in chlorophyll catabolism in plants. To test the catalytic activities of these putative enzymes, representative HY2-related genes from each class were amplified by the polymerase chain reaction and expressed in Escherichia coli. Using a coupled apophytochrome assembly assay and HPLC analysis, we examined the ability of the recombinant proteins to catalyze the ferredoxin-dependent reduction of BV to phytobilins. These investigations defined three new classes of bilin reductases with distinct substrate/product specificities that are involved in the biosynthesis of the phycobiliprotein chromophore precursors phycoerythrobilin and phycocyanobilin. Implications of these results are discussed with regard to the pathways of phytobilin biosynthesis and their evolution.  相似文献   

10.
The possible roles of mesohaem and mesobiliverdin as metabolic precursors of phycocyanobilin, the chromophore of phycocyanin, were studied in the unicellular rhodophyte Cyanidium caldarium. Dark-grown cells of this organism, which had been exposed to mesohaem, were either incubated in the dark with 5-aminolaevulinate, which results in excretion of bilins into the suspending medium, or incubated in the light, which results in synthesis of phycocyanin within the cells. By using 14C-labelling, either in the mesohaem or in the 5-aminolaevulinate administered, it was shown that mesohaem is not a precursor of phycocyanobilin in either dark or light systems. However, mesohaem was converted into mesobiliverdin in both systems, a phenomenon that is further evidence for the existence of an algal haem oxygenase. The data also showed that mesobiliverdin is not a precursor of phycocyanobilin. These results suggest that algal bilins are formed via haem degradation to biliverdin in the same way as mammalian bile pigments.  相似文献   

11.
 In protonemal tip cells of the moss Ceratodon purpureus (Hedw.) Brid., phototropism and chlorophyll accumulation are regulated by the photoreceptor phytochrome. The mutant ptr116 lacks both responses as a result of a defect in the biosynthesis of phytochromobilin, the chromophore of phytochrome, at the point of biliverdin formation. The rescue of the phototropic response and of chlorophyll synthesis were tested by injecting different substances into tip cells of ptr116. Microinjection was first optimised with the use of fluorescent dyes and an expression plasmid containing a green fluorescent protein (GFP) gene. Injected phycocyanobilin, which substitutes for phytochromobilin, rescued both the phototropic response and light-induced chlorophyll accumulation in ptr116. The same results were obtained when expression plasmids with heme oxygenase genes of rat (HO-1) and Arabidopsis thaliana (L.) Heynh. (HY1) were injected. Heme oxygenase catalyses the conversion of heme into biliverdin. Whereas HY1 has a plastid target sequence and is presumably transferred to plastids, HO-1 is proposed to be cytosolic. The data show that ptr116 lacks heme oxygenase enzyme activity and indicate that heme oxygenases of various origin are active in Ceratodon bilin synthesis. In addition, it can be inferred from the data that the intracellular localisation of the expressed heme oxygenase is not important since the plastid enzyme can be replaced by a cytosolic one. Received: 8 March 1999 / Accepted: 30 July 1999  相似文献   

12.
Assembly of holophytochrome in the plant cell requires covalent attachment of the linear tetrapyrrole chromophore precursor, phytochromobilin, to a unique cysteine in the nascent apoprotein. In this investigation we compare chromophore analogs with the natural chromophore precursor for their ability to attach covalently to recombinant oat apophytochrome and to form photoactive holoproteins. Ethylidene-containing analogs readily form covalent adducts with apophytochrome, whereas chromophores lacking this double bond are poor substrates for attachment. Kinetic measurements establish that although the chromophore binding site on apophytochrome is best tailored to phytochromobilin, apophytochrome will accommodate the two analogs with modified D-rings, phycocyanobilin and phycoerythrobilin. The phycocyanobilin-apophytochrome adduct is photoactive and undergoes a light-induced protein conformational change similar to the native holoprotein. By contrast, the phycoerythrobilin adduct is locked into a photochemically inactive protein conformation that is similar to the red light-absorbing Pr form of phytochrome. These results support the hypothesis that the photoconversion from Pr to Pfr, the far red light- absorbing form of phytochrome, involves the photoisomerization of the C15 double bond. Knowledge gained from these studies provides impetus for rational design of chromophore analogs whose insertion into apophytochrome should elicit profound changes in light-mediated plant growth and development.  相似文献   

13.
Etiolated Avena seedlings grown in the presence of 4-amino-5-hexynoic acid, an inhibitor of 5-aminolevulinic acid synthesis in plants, contain less than 10% of the spectrally detectable levels of phytochrome found in untreated seedlings (Elich, T.D., and Lagarias, J.C. (1988) Plant Physiol. 88, 747-751). In this study, incubation of explants from such seedlings with [14C]biliverdin IX alpha led to rapid covalent incorporation of radiolabel into a single 124-kDa polypeptide in soluble protein extracts. Immunoprecipitation experiments confirmed that this protein was phytochrome. Parallel experiments were performed with four unlabeled linear tetrapyrroles, the naturally occurring biliverdin IX alpha isomer, two non-natural isomers, biliverdin XIII alpha and biliverdin III alpha, and phycocyanobilin-the cleaved prosthetic group of the light-harvesting antenna protein C-phycocyanin. In all cases, except for the III alpha isomer of biliverdin, a time-dependent recovery of photoreversible phytochrome was observed. The newly formed phytochrome obtained after incubation with biliverdin IX alpha exhibited spectral characteristics identical with those of the native protein. In contrast, the spectral properties of phytochromes formed during incubation with biliverdin XIII alpha and phycocyanobilin differed significantly from those of the native chromoprotein. These results indicate that biliverdin IX alpha is an intermediate in the biosynthesis of the phytochrome chromophore and that phytochromes with prosthetic groups derived from bilatrienes having non-natural D-ring substituents are photochromic.  相似文献   

14.
An enzyme extract from the phycocyanin-containing unicellular rhodophyte, Cyanidium caldarium, reductively transforms biliverdin IX alpha to phycocyanobilin, the chromophore of phycocyanin, in the presence of NADPH. Unpurified cell extract forms both 3(E)-phycocyanobilin, which is identical to the major pigment that is released from phycocyanin by methanolysis, and 3(Z)-phycocyanobilin, which is obtained as a minor methanolysis product. After removal of low molecular weight material from the cell extract, only 3(Z)-phycocyanobilin is formed. 3(E)-Phycocyanobilin formation from biliverdin IX alpha, and the ability to isomerize 3(Z)-phycocyanobilin to 3(E)-phycocyanobilin, are reconstituted by the addition of glutathione to the incubation mixture. Partially purified protein fractions derived from the initial enzyme extract form 3(Z)-phycocyanobilin plus two additional, violet colored bilins, upon incubation with NADPH and biliverdin IX alpha. Further purified protein fractions produce only the violet colored bilins from biliverdin IX alpha. One of these bilins was identified as 3(Z)-phycoerythrobilin by comparative spectrophotometry, reverse-phase high pressure liquid chromatography, and 1H NMR spectroscopy. A C. caldarium protein fraction catalyzes the conversion of 3(Z)-phycoerythrobilin to 3(Z)-phycocyanobilin. This fraction also catalyzes the conversion of 3(E)-phycoerythrobilin to 3(E)-phycocyanobilin. The conversion of phycoerythrobilins to phycocyanobilins requires neither biliverdin nor NADPH. The synthesis of phycoerythrobilin and its conversion to phycocyanobilin by extracts of C. caldarium, a species that does not contain phycoerythrin, indicates that phycoerythrobilin is a biosynthetic precursor to phycocyanobilin. The enzymatic conversion of the ethylidine group from the Z to the E configuration suggests that the E-isomer is the precursor to the protein-bound chromophore.  相似文献   

15.
Cell-free extract of the unicellular rhodophyte, Cyanidium caldarium catalyzes enzymatic reduction of biliverdin IX alpha to phycocyanobilin, the chromophore of the light-harvesting phycobiliprotein, phycocyanin. The enzyme activity is soluble, and the required reductant is NADPH. The extract has been separated into three protein fractions, all of which are required to reconstitute biliverdin reduction. One fraction contains ferredoxin, which was identified by its absorption spectrum. This fraction could be replaced with commercial ferredoxin derived from spinach or the red alga, Porphyra umbilicalis. The second protein fraction contains ferredoxin-NADP+ reductase, which was identified by the ability to catalyze ferredoxin-dependent reduction of cytochrome c in the presence of NADPH. This fraction could be replaced with commercial spinach ferredoxin-NADP+ reductase. These two components appear to be identical to previously described components of the algal heme oxygenase system that catalyzes biliverdin IX alpha formation from protoheme in C. caldarium extracts. The third protein fraction, in the presence of the first two (or their commercial counterparts) plus NADPH, catalyzes the reduction of biliverdin IX alpha to phycocyanobilin. The results indicate that the transformation of biliverdin to phycocyanobilin catalyzed by C. caldarium extracts is a ferredoxin-linked reduction process. The results also suggest the possibility that heme oxygenation and biliverdin reduction may occur in C. caldarium on associated enzyme systems.  相似文献   

16.
Many cyanobacteria use brilliantly pigmented, multisubunit macromolecular structures known as phycobilisomes as antenna to enhance light harvesting for photosynthesis. Recent studies have defined the enzymes that synthesize phycobilin chromophores as well as many of the phycobilin lyase enzymes that attach these chromophores to their cognate apoproteins. The ability of the phycocyanin α-subunit (CpcA) to bind alternative linear tetrapyrrole chromophores was examined through the use of a heterologous expression system in Escherichia coli. E. coli strains produced phycocyanobilin, phytochromobilin, or phycoerythrobilin when they expressed 3Z-phycocyanobilin:ferredoxin oxidoreductase (PcyA), 3Z-phytochromobilin:ferredoxin oxidoreductase (HY2) from Arabidopsis thaliana, or phycoerythrobilin synthase (PebS) from the myovirus P-SSM4, respectively. CpcA from Synechocystis sp. PCC 6803 or Synechococcus sp. PCC 7002 was coexpressed in these strains with the phycocyanin α-subunit phycocyanobilin lyase, CpcE/CpcF, or the phycoerythrocyanin α-subunit phycocyanobilin isomerizing lyase, PecE/PecF, from Noctoc sp. PCC 7120. Both lyases were capable of attaching three different linear tetrapyrrole chromophores to CpcA; thus, up to six different CpcA variants, each with a unique chromophore, could be produced with this system. One of these chromophores, denoted phytoviolobilin, has not yet been observed naturally. The recombinant proteins had unexpected and potentially useful properties, which included very high fluorescence quantum yields and photochemical activity. Chimeric lyases PecE/CpcF and CpcE/PecF were used to show that the isomerizing activity that converts phycocyanobilin to phycoviolobilin resides with PecF and not PecE. Finally, spectroscopic properties of recombinant phycocyanin R-PCIII, in which the CpcA subunits carry a phycoerythrobilin chromophore, are described.  相似文献   

17.
Cell-free extracts of the unicellular red alga Cyanidium caldarium catalyze the transformation of biliverdin to a product indistinguishable from phycocyanobilin, the free bilin derived from phycocyanin by methanolysis. Crude cell-free extract requires biliverdin as the only substrate, but after removal of low molecular weight components by gel filtration, the reaction shows an additional requirement for a reduced pyridine nucleotide. Boiled extract is enzymically inactive, activity is not sedimented by high-speed centrifugation, and mesobiliverdin cannot serve as a substrate.

Incubation of cell extracts with biliverdin yields two products with very similar spectrophotometric properties in acidic methanol, but which are separable by reverse-phase high pressure liquid chromatography. The same two products are formed by methanolysis of protein-bound phycocyanin chromophore, with the late-eluting one predominating. The two products derived from either phycocyanin methanolysis or cell extract incubation with biliverdin are partially interconvertible and they form the same ethylidine-free isomeric derivative, mesobiliverdin. Their absorption spectra correspond to those of the Z- and E-ethylidine isomers of phycocyanobilin. Based on previous work showing that the major methanolysis product has the E-ethylidine configuration, the other product of methanolysis and enzymic biliverdin transformation is therefore the Z-ethylidine isomer. The time course for formation of the two products during incubation suggests that the early-eluting product is the precursor of the late-eluting one. These results suggest that Z-ethylidine phycocyanobilin is the precursor of the E-ethylidine isomer, and that the latter may be a normal cellular precursor to protein-bound phycocyanin chromophore.

  相似文献   

18.
The widely distributed phytochrome photoreceptors carry a bilin chromophore, which is covalently attached to the protein during a lyase reaction. In plant phytochromes, the natural chromophore is coupled by a thioether bond between its ring A ethylidene side chain and a conserved cysteine residue within the so-called GAF domain of the protein. Many bacterial phytochromes carry biliverdin as natural chromophore, which is coupled in a different manner to the protein. In phytochrome Agp1 of Agrobacterium tumefaciens, biliverdin is covalently attached to a cysteine residue close to the N terminus (position 20). By testing different natural and synthetic biliverdin derivatives, it was found that the ring A vinyl side chain is used for chromophore attachment. Only those bilins that have ring A vinyl side chain were covalently attached, whereas bilins with an ethylidene or ethyl side chain were bound in a noncovalent manner. Phycocyanobilin, which belongs to the latter group, was however covalently attached to a mutant in which a cysteine was introduced into the GAF domain of Agp1 (position 249). It is proposed that the regions around positions 20 and 249 are in close contact and contribute both to the chromophore pocket. In competition experiments it was found that phycocyanobilin and biliverdin bind with similar strength to the wild type protein. However, in the V249C mutant, phycocyanobilin bound much more strongly than biliverdin. This finding could explain why during phytochrome evolution in cyanobacteria, the chromophore-binding site swapped from the N terminus into the GAF domain.  相似文献   

19.
Itaconate biosynthesis in Aspergillus terreus.   总被引:1,自引:0,他引:1       下载免费PDF全文
Itaconate biosynthesis was studied in intact cells of high-yield (RC4') and low-yield (CM85J) strains of the fungus Aspergillus terreus by methods (tracers, nuclear magnetic resonance spectroscopy, and mass spectroscopy) that did not interfere with metabolism. Itaconate formation in RC4' required de novo protein biosynthesis. Krebs cycle intermediates increased in both strains during the production of itaconic acid. The Embden-Meyerhof-Parnas pathway and the Krebs cycle were shown to be involved in this biosynthesis by using 14C- and 13C-labelled substrates and nuclear magnetic resonance spectroscopy. A metabolic pathway for itaconate formation from glucose in A. terreus is proposed.  相似文献   

20.
Phycocyanin is a major light-harvesting pigment in bluegreen, red, and cryptomonad algae. This pigment is composed of phycocyanobilin chromophores covalently attached to protein. Phycocyanobilin is an open-chain tetrapyrrole structurally close to biliverdin. Biliverdin is formed in animals by oxidative ring-opening of protoheme. Recent evidence indicates that protoheme is a precursor of phycocyanobilin in the unicellular rhodophyte, Cyanidium caldarium. To find out if biliverdin is an intermediate in the conversion of protoheme to phycocyanobilin, [14C]biliverdin was administered along with N-methylmesoporphyrin IX (which blocks endogenous protoheme formation) to growing cells of C. caldarium. To avoid phototoxic effects due to the porphyrin, a mutant strain was used that forms large amounts of both chlorophyll and phycocyanin in the dark. After 12 or 24 h in the dark, cells were harvested and exhaustively extracted to remove free pigments. Next, protoheme was extracted. Phycocyanobilin was then cleaved from the apoprotein by methanolysis. Protoheme and phycocyanobilin were purified by solvent partition, DEAE-Sepharose chromatography, and preparative reverse-phase high-pressure liquid chromatography. Absorption was monitored continuously and fractions were collected for radioactivity determination. Negligible amounts of label appeared in the protoheme-containing fractions. A major portion of label in the eluates of the phycocyanobilin-containing samples coincided with the absorption peak at 22 min due to phycocyanobilin. In a control experiment, [14C]biliverdin was added to the cells after incubation and just before the phycocyanobilin-apoprotein cleavage step. The major peak of label then eluted with the absorption peak at 12 min due to biliverdin, indicating that during the isolation biliverdin is not converted to compounds coeluting with phycocyanobilin. It thus appears that exogenous biliverdin can serve as a precursor to phycocyanobilin in C. caldarium, and that the route of incorporation is direct rather than by degradation and reincorporation of 14C through protoheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号