首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The association constants for the binding of various saccharides to hen egg-white lysozyme and human lysozyme have been measured by fluorescence titration. Among these are the oligosaccharides GlcNAc-beta(1 leads to 4)-MurNAc-beta(1 leads to 4)-GlcNAc-beta(1 leads to 4)-GlcNAc, GlcNAc-beta(1 leads to 4)-MurNAc-beta(1 leads to 4)-GlcNAc-beta(1 leads to 4)-N-acetyl-D-xylosamine, and GlcNAc-beta(1 leads to 4-GlcNAc-beta(1 leads to 4)-MurNAc, prepared here for the first time. The binding constants for saccharides which must have N-acetylmuramic acid, N-acetyl-D-glucosamine, or N-acetyl-D-xylosamine bound in subsite D indicate that there is no strain involved in the binding of N-acetyl-D-glycosamine in this site, and that the lactyl group of N-acetylmuramic acid (rather than the hydroxymethyl group) is responsible for the apparent strain previously reported for binding at this subsite. For hen egg-white lysozyme, the dependence of saccharide binding on pH or on a saturating concentration of Gd(III) suggests that the conformation of several of the complexes are different from one another and from that proposed for a productive complex. This is supported by fluorescence difference spectra of the various hen egg-white lysozyme-saccharide complexes. Human lysozyme binds most saccharides studied more weakly than the hen egg-white enzyme, but binds GlcNAc-beta(1 leads to 4)-MurNAc-beta(1leads to 4)-GlcNAc-beta(1 leads to 4)-MurNAc more strongly. It is suggested that subsite C of the human enzyme is "looser" than the equivalent site in the hen egg enzyme, so that the rearrangement of a saccharide in this subsite in response to introduction of an N-acetylmuramic acid residue into subsite D destabilizes the saccharide complexes of human lysozyme less than it does the corresponding hen egg-white lysozyme complexes. This difference and the differences in the fluorescence difference spectra of hen egg-white lysozyme and human lysozyme are ascribed mainly to the replacement of Trp-62 in hen egg-white lysozyme by Tyr-63 in the human enzyme. The implications of our findings for the assumption of superposition and additivity of energies of binding in individual subsites, and for the estimation of the role of strain in lysozyme catalysis, are discussed.  相似文献   

2.
Treatment of 2-acetamido-2-deoxy-D-mannono-1,4-lactone with dicyclohexylamine in ethanolic solution afforded an unsaturated 1,4-lactone, 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,4-lactone (1), in good yield. 2-Acetamido-2,3-dideoxy-D-threo-hex-2-enono-1,4-lactone (2) was similarly prepared from 2-acetamido-2-deoxy-D-galactono-1,4-lactone. An unsaturated 1,5-lactone, 2-acetamido-2,3-dideoxy-D-threo-hex-2-enono-1,5-lactone (4), was obtained through the oxidation of 2-acetamido-2-doexy-4,6-0-isopropylidene-D-galactopyranose with silver carbonate on Celite, followed by mild hydrolysis. The inhibitory activity of four isomeric 2-acetamido-2,3-dideoxy-D-hex-2-enonolactones [1, 2, 4, and 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,5-lactone (3)] was assayed against 2-acetamido-2-deoxy-beta-D-glucosidase from bull epididymis. Only the erythro lactones 1 and 3 are weak competitive inhibitors, whereas the threo lactones 2 and 4 are practically inactive. The 1,4-lactone 1 inhibited 2-acetamido-2-deoxy-beta-D-glucosidase more strongly than the 1,5-lactone 3. The lactones 1-4 were found to be quite stable in aqueous solution or under inhibitory-assay conditions. In addition, two 2-acetamido-2-deoxy-D-glycals, 2-acetamido-1,5-anhydrohex-1-enitol (7) were tested; both are 10 times as active as 1.  相似文献   

3.
Lee YJ  Fulse DB  Kim KS 《Carbohydrate research》2008,343(10-11):1574-1584
The synthesis of dibenzyl 6-O-naphthylmethyl-2,3,5-tri-O-benzoyl-beta-D-galactofuranosyl-(1-->5)-2,3-di-O-benzoyl-6-O-benzyl-beta-D-galactofuranosyl-(1-->4)-3-O-benzyl-2-O-pivaloyl-alpha-l-rhamnopyranosyl-(1-->3)-2-acetamido-2-deoxy-4,6-di-O-benzoyl-alpha-D-glucopyranosyl phosphate (1), a protected form of the tetrasaccharide phosphate of the linkage region of the arabinogalactan-peptidoglycan complex in the mycobacterial cell wall, has been accomplished. Key steps include the coupling of four monosaccharide building blocks with complete stereoselectivity by glycosylations employing thioglycosides, 2'-carboxybenzyl glycosides, and glycosyl fluorides as glycosyl donors. The alpha-glycosyl phosphate linkage was also stereoselectively elaborated by reaction of a tetrasaccharide hemiacetal with tetrabenzyl pyrophosphate in the presence of a base.  相似文献   

4.
A fragment of Micrococcus lysodeikticus cell-wall obtained by cetylpyridinium recipitation from the nondialyzable portion of the degradation products of egg-white lysozyme was studied by the periodate oxidation and methylation procedures. The fragment consists of a polysaccharide chain composed of about 40 repeating (1 leads to 4)-O-(2-acetamido-2-deoxy-beta-D-mannopyranosyluronic acid)-(1 leads to 6)-O-(alpha-D-glucopyranosyl) residues with D-glucopyranosyl residues at both ends. The alpha-D-glucopyranose residue at the reducing end is linked to a phosphate group that is also linked to C-6 of a 2-acetamido-3-O-(D-1-carboxyethyl)-2-deoxy-beta-D-glucopyranosyl residue of a peptidoglycan chain composed of four repeating (1 leads to 4)-O-[2-acetamido-3-O-(D-1-carboxyethyl)-2-deoxy-beta-D-glucopyranosyl] residues. The peptidoglycan chain has, as nonreducing group, a 2-acetamido-2-deoxy-beta-D-glucopyranosyl group, and, as reducing residue, a 2-acetamido-3-O-(D-1-carboxytheyl)-2-deoxy-beta-D-glucose residue.  相似文献   

5.
A structure of the trisaccharide 2-acetamido-2-deoxy-D-muramic acid-beta (1----4)-2-acetamido-2-deoxy-D-glucose-beta (1----4)-2-acetamido-2-deoxy-D-muramic acid (NAM-NAG-NAM), bound to subsites B, C and D in the active-site cleft of hen egg-white lysozyme has been determined and refined at 1.5 A resolution. The resulting atomic co-ordinates indicate that the NAM residue in site D is distorted from the full 4C1 chair conformation to one in which the ring atoms C-1, C-2, O-5 and C-5 are approximately coplanar, and the hydroxymethyl group is positioned axially (a conformation best described as a sofa). This finding supports the original proposals that suggested the ground-state conformation of the sugar bound in site D is strained to one that more closely resembles the geometry required for the oxocarbonium-ion transition state, the next step along the reaction pathway. Additionally, detailed analysis at 1.5 A resolution of the environments of the catalytic residues Glu35 and Asp52 provides new information on the properties that may allow lysozyme to promote the stabilization of an unusually long-lived oxocarbonium-ion transition state. Intermolecular interactions between the N-acetylmuramic acid residue in site D and the lysozyme molecule that contribute to the saccharide ring distortion include: close packing of the O-3' lactyl group with a hydrogen-bonded "platform" of enzyme residues (Asp52, Asn46, Asn59, Ser50 and Asp48), a close contact between the hydroxymethyl group of ring D and the 2'-acetamido group of ring C and a strong hydrogen-bonded interaction between the NH group of Val109 and O-6 of ring D that stabilizes the observed quasi-axial orientation of the -CH2OH group. Additionally, the structure of this complex shows a strong hydrogen bond between the carboxyl group of Glu35 and the beta-anomeric hydroxyl group of the NAM residue in site D. The hydrogen-bonded environment of Asp52 in the native enzyme and in the complex coupled with the very unfavorable direction of approach of the potential carboxylate nucleophile makes it most unlikely that there is a covalent glycosylenzyme intermediate on the hydrolysis pathway of hen egg-white lysozyme.  相似文献   

6.
The hapten of the T-antigen was synthesized with a peptide-like amide-spacer as 2-(4-methoxycarbonylbutanecarboxamido)ethyl 2-acetamido-2-deoxy-3-O-beta-D-galactopyranosyl-alpha-D-galactopyranoside and coupled with serum albumin to give a synthetic antigen. Other O-beta-D-galactopyranosyl haptens, 2-(4-methoxycarbonylbutanecarboxamido)ethyl 2-acetamido-2-deoxy-4-O-beta-D-galactopyranosyl-alpha-D-galactopyranoside, O-beta-D-galactopyranosyl-(1 leads to 3)-O-[beta-D-galactopyranosyl-(1 leads to 4)]-2-acetamido-2-deoxy-alpha-D-galactopyranoside, and 2-acetamido-2-deoxy-3-O-beta-D-galactopyranosyl-alpha-D-glucopyranoside, the last compound being the determinant of the Lewis Lec antigen, were also synthesized.  相似文献   

7.
4'-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O- benzyl-6-O-benzoyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with a disaccharide donor, 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D-galactopyranoside, in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in a tetrasaccharide, 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)- (4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D-galactopyranosyl)- (1-->4)-(2,3-di-O-benzyl-6-O-benzoyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside, in 69% yield. The complete removal of O-protecting groups in the tetrasaccharide, the replacement of N-trichloroacetyl by N-acetyl group, and the reduction of the aglycone azide group to amine led to the target aminoethyl glycoside of beta-D-Gal- (1-->3)-beta-D-GalNAc-(1-->4)-beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of asialo-GM1 ganglioside in 72% overall yield. Selective 3'-O-glycosylation of 2-azidoethyl 2,3,6-tri-O- benzyl-4-O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with thioglycoside methyl (ethyl 5-acetamido-4,7,8,9-tetra-O- acetyl-3,5-dideoxy-2-thio-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and trifluoroacetic acid afforded 2-azidoethyl [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and tri-fluoracetic acid afforded 2-azidoethyl[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl) (2,6-di-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside, the selectively protected derivative of the oligosaccharide chain of GM3 ganglioside, in 79% yield. Its 4'-O-glycosylation with a disaccharide glycosyl donor, (4-trichloroacetophenyl-4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O- acetyl-beta-D-galactopyranosyl) 1-thio-2-trichloroacetamido-beta-D-galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoroacetic acid gave 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D- galactopyranosyl)-(1-->4)-[[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D- galacto-2-nonulopyranosyl)onate]-(2-->3)]-(2,6-di-O-benzyl-beta-D- galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside in 85% yield. The resulting pentasaccharide was O-deprotected, its N-trichloroacetyl group was replaced by N-acetyl group, and the aglycone azide group was reduced to afford in 85% overall yield aminoethyl glycoside of beta-D-Gal-(1-->3)-beta-D-GalNAc-(1-->4)-[alpha-D-Neu5Ac-(2-->3)]- beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of GM1 ganglioside. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 1; see also http://www.maik.ru.  相似文献   

8.
An acidic O-specific polysaccharide containing D-glucuronic acid (D-GlcA), 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (D-GlcNAc3NAcA), 2,3-diacetamido-2,3-dideoxy-D-mannuronoyl-L-alanine (D-ManNAc3NAcA6Ala), and 2-acetamido-2,4, 6-trideoxy-4-[(S)-3-hydroxybutyramido]-D-glucose (D-QuiNAc4NAcyl) was obtained by mild acid degradation of the lipopolysaccharide of the bacterium Pseudoalteromonas sp. KMM 634 followed by gel-permeation chromatography. The polysaccharide was cleaved selectively with a new solvolytic agent, trifluoromethanesulfonic acid, to give a disaccharide and a trisaccharide with D-GlcNAc3NAcA at the reducing end. The borohydride-reduced oligosaccharides and the initial polysaccharide were studied by GLC-MS and 1H- and 13C-NMR spectroscopy, and the following structure of the linear tetrasaccharide repeating unit of the polysaccharide was established: -->3)-alpha-D-QuipNAc4Ac4NAcyl-(1-->4)-beta-D-ManpNAc3NAcA6Ala+ ++-(1-->4)-b eta-D-GlcpNAc3NAc3NAcA-(1-->4)-beta-D-GlcpA-(1-->.  相似文献   

9.
2,4-Dinitrophenyl 2-acetamido-2-deoxy-beta-d-glucopyranosyl-(1-->4)-2-deoxy-2-fluoro-beta-d-glucopyranoside (GN2FG-DNP) and 2-acetamido-2-deoxy-beta-d-glucopyranosyl-(1-->4)-2-deoxy-2-fluoro-beta-d-glucopyranosyl fluoride (GN2FG-F) were prepared using a divergent synthetic approach involving 10 steps. The key steps involved the preparation of 1-O-acetyl-3,6-di-O-benzyl-2-deoxy-2-fluoro-alpha/beta-d-glucopyranose using Selectfluor(trade mark) in the presence of acetic acid and the subsequent glycosylation of this acceptor to generate the core 2-fluorodisaccharide. After further elaboration, the target molecules were obtained and tested as probes of the mechanism of hen egg white lysozyme (HEWL). Compound GN2FG-DNP is not a substrate for the enzyme while compound GN2FG-F is cleaved slowly with an apparent K(m) greater than 5mM and a second-order rate constant of k(cat)/K(m)=9.6s(-1)M(-1). Comparison of this value to that estimated for the hydrolysis of beta-chitobiosyl fluoride by HEWL (1200s(-1)M(-1)) [Ballardie, F. W.; Capon, B.; Cuthbert, M. W.; Dearie, W. M. Bioorg. Chem.1977, 6, 483-509] revealed a 126-fold rate decrease upon substitution of a fluorine group for the 2-acetamido group of beta-chitobiosyl fluoride. This decrease resulted in the steady-state accumulation of an intermediate as visualized by mass spectrometry and the ultimate crystallographic determination of its structure [Vocadlo, D. J.; Davies, G. J.; Laine, R.; Withers, S. G. Nature2001, 412, 835-838].  相似文献   

10.
The cleavage of cell wall tetrasaccharide, the beta(1 leads to 4)-linked dimer of the basic repeating disaccharide N-acetyl-D-glucosamine-beta(1 leads to 4)-N-acetyl-D-muramic acid, by lysozyme has been studied at various concentrations of lysozyme and over long time ranges. A theoretical analysis of the kinetic results indicates that direct hydrolysis of the tetrasaccharide by binding in subsities CDEF of the active site of lysozyme is significant at long times relative to the transglycosylation pathway. The binding constant for tetrasaccharide in CDEF is shown to be 10(3) times larger than that determined on the basis of an analysis of kinetic data over a more restricted range of times and concentrations.  相似文献   

11.
On mild acid degradation of Pseudomonas aeruginosa O:3a,b and O:3a,d lipopolysaccharides O-specific polysaccharides were isolated. Both polysaccharides were found to contain 2-acetamido-2,6-dideoxy-D-galactose, identified as fucosamine hydrochloride formed after hydrolysis with a very low yield. The other two components of the trisaccharide repeating unit, 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid and 2,3-(1-acetyl-2-methyl-2-imidazolino-5,4)-2,3-dideoxy-D-mannuronic acid, were identified without isolation in their free state directly in the course of structural investigation of the polysaccharides. Both these monosaccharides have never before been found in nature. Solvolysis of either O:3a,b or O:3a,d polysaccharides with liquid hydrogen fluoride resulted in the formation of the same trisaccharide, N-acetylfucosamine residue being the reducing end. The structure of this trisaccharide, which is the repeating unit of both polysaccharides, was deduced from the results of successive chemical modifications and 13C-nuclear magnetic resonance spectra recorded for every oligosaccharide formed. As a result, the acidic diaminosugars were converted into 2,3-diacetamido-2,3-dideoxy-D-mannose indistinguishable from authentic sample. The O-specific polysaccharides O:3a,b and O:3a,d differed in the configuration of the glycosidic bond of N-acetylfucosamine residue only and had the following structures: leads to 4)DManImU(beta 1 leads to 4)DMan(NAc)2U (beta 1 leads to 3)DFucNAc(beta 1- leads to 4)DManImU(beta 1 leads to 4)DMan(NAc)2U (beta 1 leads to 3)DFucNAc(alpha 1- where DManImU = 2.3-(1-acetyl-2-methyl-2-imidazolino-5,4)-2, 3-dideoxy-D-mannuronic acid, DMan(NAc)2U = 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid, DFucNAc = 2-acetamido-2,6-dideoxy-D-galactose. The structures established were in agreement with optical rotations and assignments of all the signals in the 13C-nuclear magnetic resonance spectra of the polysaccharides.  相似文献   

12.
4-Methylumbelliferyl 2-acetamido-2-deoxy-β- -glucopyranoside, 2-acetamido-4-O-(2-acetamido-2-deoxy-β- -glucopyranosyl)-2-deoxy-β- -glucopyranoside (di-N-acetyl-β-chitobioside), and O-(2-acetamido-2-deoxy-β- -glucopyranosyl)-(1→4)-O-(2-acetamido-2-deoxy-β- -glucopyranosyl)-(1→4)-2-acetamido-2-deoxy-β- -glucopyranoside (tri-N-acetyl-β-chitotrioside) were obtained in good yield from the corresponding peracetylated glycosyl chlorides by condensation with the sodium salt of 4-methylumbelliferone in N,N-dimethylformamide. The trisaccharide glycoside is hydrolyzed by lysozyme and is, therefore, a convenient substrate for this enzyme; the 4-methylumbelliferone produced can be determined by the increase of the fluorescence intensity at 442 nm. The intensity of the fluorescence of 4-methylumbelliferyl tri-N-acetyl-β-chitotrioside is enhanced upon binding with lysozyme without modification of the position of the absorption maximum. The binding constant and the rate of hydrolysis of the trisaccharide glycoside by lysozyme are higher than those obtained with p-nitrophenyl tri-N-acetyl-β-chitotrioside.  相似文献   

13.
The tetrasaccharides O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D- mannopyranosyl-(1----6)]-O-(4-deoxy-beta-D-lyxo-hexopyranosyl)-(1- ---4)-2- acetamido-2-deoxy-alpha, beta-D-glycopyranose (22) and O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D-mannopyranosyl-(1----6)]-O- beta-D-talopyranosyl-(1----4)-2-acetamido-2-deoxy-alpha, beta-D- glucopyranose (37), closely related to the tetrasaccharide core structure of N-glycoproteins, were synthesized. Starting with 1,6-anhydro-2,3-di-O-isopropylidene-beta-D-mannopyranose, the glycosyl donors 3,6-di-O-acetyl-2-O-benzyl-2,4-dideoxy-alpha-D-lyxo- hexopyranosyl bromide (10) and 3,6-di-O-acetyl-2,4-di-O-benzyl-alpha-D-talopyranosyl bromide (30), were obtained in good yield. Coupling of 10 or 30 with 1,6-anhydro-2-azido-3-O-benzyl-beta-D-glucopyranose to give, respectively, the disaccharides 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2-O-benzyl-4 -deoxy- beta-D-lyxo-hexopyranosyl)-beta-D-glucopyranose and 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2,4-di-O-ben zyl- beta-D-talopyranosyl)-beta-D-glucopyranose was achieved with good selectivity by catalysis with silver silicate. Simultaneous glycosylation of OH-3' and OH-6' of the respective disaccharides with 2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl chloride yielded tetrasaccharide derivatives, which were deblocked into the desired tetrasaccharides 22 and 37.  相似文献   

14.
Starting from D-mannose, D-glucose and L-fucose, the pentasaccharide derivative methyl 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl-(1-->3)-2-O-acetyl-4,6-O-benzylidene-alpha-D-mannopyranosyl-(1-->3)-2-O-acetyl-6-O-benzyl-4-O-(2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl)-alpha-D-mannopyranosyl-(1-->4)-[2-(trimethylsilyl)ethyl 2,3-di-O-benzyl-beta-D-glucopyranosid]uronate was synthesized. This compound with two alpha-mannopyranosyl units was transformed, via Walden inversion and subsequent deprotection, into the alpha-D-glucosamine-type target compound, namely methyl alpha-L-fucopyranosyl-(1-->3)-2-acetamido-2-deoxy-alpha-D-glucopyranosyl-(1-->3)-2-acetamido-2-deoxy-4-O-(alpha-L-fucopyranosyl)-alpha-D-glucopyranosyl-(1-->4)-[2-(trimethylsilyl)ethyl beta-D-glucopyranosid]uronate which is related to the repeating unit of the O-antigen from Shigella dysenteriae type 4.  相似文献   

15.
Glycoconjugates are distributed on the cell surfaces of some small-sized treponemes and have been reported to be completely different from lipopolysaccharides. We separated a glycoconjugate fraction from Treponema medium ATCC 700293, a medium-sized oral spirochete, to assess its immunobiological activities and elucidate the chemical structure of its polysaccharide part using phenol/water extraction, hydrophobic chromatography, and gel filtration. The glycoconjugate showed negligible or weak endotoxic and immunobiological properties. The chemical structure of the polysaccharide part was shown by two-dimensional NMR and MALDI-TOF-MS to be a tetrasaccharide backbone with two amino acids: [-->4)beta-d-GlcpNAc3NAcA(1-->4)beta-d-ManpNAc3NAOrn(1-->3)beta-d-GlcpNAc(1-->3)alpha-D-Fucp4NAsp(1-->] where GlcNAc3NAcA is 2,3-diacetamido-2,3-dideoxyglucuronic acid, ManNAc3NAOrn is Ndelta-(2-acetamido-3-amino-2,3-dideoxymannuronyl)ornithine, and Fuc4NAsp is 4-(alpha-aspartyl)amino-4,6-dideoxygalactose.  相似文献   

16.
Endo-beta-galactosidase was purified 4400-fold from a culture filtrate of Escherichia freundii with 45% recovery. The enzyme preparation was practically free of exoglycosidases, sulfatase, and proteases. This enzyme hydrolyzed several keratan sulfates, endoglycosidically releasing oligosaccharides of various molecular sizes. Among the digestion products of the corneal keratan sulfate, the structure of a disaccharride and a tetrasaccharride were shown to be 2-acetamido-2-deoxy-6-O-sulfo-beta-D-glucosyl-(1 leads to 3)-D-galactose and 2-acetamido-2-deoxy-6-O-sulfo-beta-D-glucosyl-(1 leads to 3)-6-O-sulfo-beta-D-galactosyl-(1 leads to 4)-2-acetamido-2-deoxy-6-O-sulfo-beta-D-glucosyl-(1 leads to 3)-D-galactose, respectively. These oligosaccharide structures indicate that this enzyme specifically hydrolyzes the galactosidic bonds in which nonsulfated galactose residues participate. The enzyme could also hydrolyze a small oligosaccharide such as lacto-N-neotetraitol as follows: Gal(beta 1 leads to 4)GlcNAc(beta 1 leads to 3)Gal(beta 1 leads to 4) sorbitol leads to Gal(beta 1 leads to 4)GlcNAc(beta 1 leads to 3)Gal + sorbitol AB active blood group substance could be hydrolyzed by this enzyme only after Smith degradation. After enzymatic digestion small oligosaccharides and resistant macromolecules were produced. These findings indicate that the enzyme should be useful in studying the precise structures of keratan sulfates, related glycoproteins, and oligosaccharides.  相似文献   

17.
The O-specific polysaccharide (OPS) of Vibrio cholerae 08 was isolated by mild acid degradation of the lipopolysaccharide and studied by two-dimensional NMR spectroscopy, including NOESY and heteronuclear multiple-bond correlation (HMBC) experiments. The OPS was found to have a tetrasaccharide repeating unit with the following structure: --> 4)-beta-D-Glcp NAc3NAcylAN-(1 --> 4)-beta-D-Manp NAc3NAcAN-(1 --> 4)-alpha-L-Gulp NAc3NAcA-(1 --> 3) -beta-D-QuipNAc4NAc-(1 --> where QuiNAc4NAc is 2,4-diacetamido-2,4,6-trideoxyglucose, GlcNAc3NAcylAN is 2-acetamido-3-(N-formyl-L-alanyl)amino-2,3-dideoxyglucuronamide, ManNAc3NAcAN is 2,3-diacetamido-2,3-dideoxymannuronamide, and GulNAc3NAcA is 2,3-diacetamido-2,3-dideoxyguluronic acid. The OPS was stable towards acid hydrolysis and solvolysis with anhydrous hydrogen fluoride, but could be cleaved selectively with trifluoromethanesulfonic (triflic) acid by the glycosidic linkages of beta-QuiNAc4NAc and alpha-GulNAc3NAcA. The structures of the oligosaccharides obtained that were elucidated by electrospray ionization (ESI) MS and NMR spectroscopy, confirmed the OPS structure.  相似文献   

18.
The lacto-N-neotetraose tetrasaccharide was synthesized on a new dendrimeric support, based on polyethylene glycol. Starting from 1-thio-beta-D-lactose, the trisaccharide (2-acetamido-2-deoxy-beta-D-glucopyranosyl)-(1-->3)-O-beta-D-galactopyranosyl-(1-->4)-1-thio-beta-D-glucopyranose was obtained using Neisseria meningitidis beta-(1-->3)-N-acetylglucosaminyltransferase according to a soluble synthesis approach, bound on the support and galactosylated using the milk beta-(1-->4)-galactosyl transferase to give after cleavage the tetrasaccharide lacto-N-neotetraose.  相似文献   

19.
4-Methylumbelliferyl 2-acetamido-2-deoxy-β-D-glucopyranoside, 2-acetamido-4-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-2-deoxy-β-D-glucopyranoside (di-N-acetyl-β-chitobioside), and O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→4)-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranoside (tri-N-acetyl-β-chitotrioside) were obtained in good yield from the corresponding peracetylated glycosyl chlorides by condensation with the sodium salt of 4-methylumbelliferone in N,N-dimethylformamide. The trisaccharide glycoside is hydrolyzed by lysozyme and is, therefore, a convenient substrate for this enzyme; the 4-methylumbelliferone produced can be determined by the increase of the fluorescence intensity at 442 nm. The intensity of the fluorescence of 4-methylumbelliferyl tri-N-acetyl-β-chitotrioside is enhanced upon binding with lysozyme without modification of the position of the absorption maximum. The binding constant and the rate of hydrolysis of the trisaccharide glycoside by lysozyme are higher than those obtained with p-nitrophenyl tri-N-acetyl-β-chitotrioside.  相似文献   

20.
T G Warner  S K Loftin 《Enzyme》1989,42(2):103-109
Photolysis of the lysosomal neuraminidase in crude homogenates of cultured human skin fibroblasts was carried out using the potent competitive enzyme inhibitor, 9-S-(4-azido-2-nitrophenyl)-5-acetamido-2,6-anhydro-2,3,5,9-tetradeoxy-9 -thio-D - glycero-D-galacto-non-2-enonic acid (9-PANP-2,3-D-NANA). Irradiation of the homogenate and the inhibitor (2 min, pH 4.3, 10 degrees C) with a medium pressure mercury lamp resulted in about a 24% reduction of enzyme activity compared to irradiated controls that did not contain additives. No significant loss of activity was observed with homogenate that contained a photoreactive thioglycoside of sialic acid that was not an inhibitor of the enzyme. Similarly, the enzyme activity was not affected when 2-deoxy-2,3-dehydro-N-acetyl neuraminic acid was photolyzed with the homogenate. The latter is a potent competitive inhibitor but it is not photoreactive. Also, the products obtained by prephotolyzing 9-PANP-2,3-D-NANA gave similar enzyme levels under standard assay conditions when compared with the nonirradiated material. Together, these results demonstrate that the photoinactivation is highly specific and both the aryl azide and the unsaturated pyran portion of the molecule are required for inactivation. The title compound may be useful as a potential photolabeling reagent which may facilitate purification of the enzyme and permit further characterization of the mutation in sialidosis patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号