首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对一株BacilluspumilusWL_11木聚糖酶的纯化、酶学性质及其底物降解模式进行了研究。经过硫酸铵盐析、CM_Sephadex及SephadexG_75层析分离纯化,获得一种纯化的WL_11木聚糖酶A ,其分子量为2 6 0kD ,pI值9 5 ,以燕麦木聚糖为底物时的表观Km 值为16 6mg mL ,Vmax值为12 6 3μmol (min·mg)。木聚糖酶A的pH稳定范围为6 0至10 4 ,最适作用pH范围则在7 2至8 0之间,是耐碱性木聚糖酶;最适作用温度为4 5℃~5 5℃,在37℃、4 5℃以下时该酶热稳定性均较好;5 0℃保温时,该酶活力的半衰期大约为2h ,在超过5 0℃的环境下,该酶的热稳定较差,5 5℃和6 0℃时的酶活半衰期分别为35min和15min。WL_11木聚糖酶A对来源于燕麦、桦木和榉木的可溶性木聚糖的酶解结果发现,木聚糖酶A对几种不同来源的木聚糖的降解过程并不一致。采用HPLC法分析上述底物的降解产物生成过程发现木聚糖酶A为内切型木聚糖酶,不同底物的降解产物中都无单糖的积累,且三糖的积累量都较高;与禾本科的燕麦木聚糖底物降解不同的是,木聚糖酶A对硬木木聚糖降解形成的五糖的继续降解能力较强。采用TLC法分析了WL_11粗木聚糖酶降解燕麦木聚糖的过程,结果表明燕麦木聚糖能够被WL_11粗木聚糖酶降解生成系列木寡糖,未检出木糖,这说明WL_11主要合成内切型木聚  相似文献   

2.
A novel xylanase (xylanase IV) which produces xylotetraose as the only low-molecular-weight oligosaccharide from oat spelt xylan was isolated from the culture medium of Aeromonas caviae ME-1. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the xylanase IV molecular weight was 41,000. Xylanase IV catalyzed the hydrolysis of oat spelt xylan, producing exclusively xylotetraose. The acid hydrolysate of the product gave d-xylose. The enzyme did not hydrolyze either p-nitrophenyl-(beta)-d-xyloside, small oligosaccharides (xylobiose and xylotetraose), or polysaccharides, such as starch, cellulose, carboxymethyl cellulose, laminarin, and (beta)-1,3-xylan.  相似文献   

3.
Badal C. Saha   《Process Biochemistry》2004,39(12):1871-1876
A newly isolated strain of the fungus, Mucor circinelloides (NRRL 26519), when grown on lactose, cellobiose, or Sigmacell 50 produces complete cellulase (endoglucanase, cellobiohydrolase, and β-glucosidase) system. The extracellular endoglucanase (EG) was purified to homogeneity from the culture supernatant by ethanol precipitation (75%, v/v), CM Bio-Gel A column chromatography, and Bio-Gel A-0.5 m gel filtration. The purified EG (specific activity 43.33 U/mg protein) was a monomeric protein with a molecular weight of 27 000. The optimum temperature and pH for the action of the enzyme were at 55 °C and 4.0–6.0, respectively. The purified enzyme was fully stable at pH 4.0–7.0 and temperature up to 60 °C. It hydrolysed carboxymethyl cellulose and insoluble cellulose substrates (Avicel, Solka-floc, and Sigmacell 50) to soluble cellodextrins. No glucose, cellobiose, and short chain cellooligosaccarides were formed from these substrates. The purified EG could not degrade oat spelt xylan and larch wood xylan. It bound to Avicell, Solka-floc, and Sigmacell 50 at pH 5.0 and the bound enzyme was released by changing the pH to 8.0. The enzyme activity was enhanced by 27±5 and 44±14% by the addition of 5 mM MgCl2 and 0.5 mM CoCl2, respectively, to the reaction mixture. Comparative properties of this enzyme with other fungal EGs are presented.  相似文献   

4.
Highly thermostable β-xylanase produced by newly isolated Thermomyces lanuginosus THKU-49 strain was purified in a four-step procedure involving ammonium sulfate precipitation and subsequent separation on a DEAE-Sepharose fast flow column, hydroxylapatite column, and Sephadex G-100 column, respectively. The enzyme purified to homogeneity had a specific activity of 552 U/mg protein and a molecular weight of 24.9 kDa. The optimal temperature of the purified xylanase was 70°C, and it was stable at temperatures up to 60°C at pH 6.0; the optimal pH was 5.0–7.0, and it was stable in the pH range 3.5–8.0 at 4°C. Xylanase activity was inhibited by Mn2+, Sn2+, and ethylenediaminetetraacetic acid. The xylanase showed a high activity towards soluble oat spelt xylan, but it exhibited low activity towards insoluble oat spelt xylan; no activity was found to carboxymethylcellulose, avicel, filter paper, locust bean gum, cassava starch, and p-nitrophenyl β-d-xylopyranoside. The apparent K m value of the xylanase on soluble oat spelt xylan and insoluble oat spelt xylan was 7.3 ± 0.236 and 60.2 ± 6.788 mg/ml, respectively. Thin-layer chromatography analysis showed that the xylanase hydrolyzed oat spelt xylan to yield mainly xylobiose and xylose as end products, but that it could not release xylose from the substrate xylobiose, suggesting that it is an endo-xylanase.  相似文献   

5.
Degradation of xylan requires several enzymes. Two chimeric enzymes, xyln-ara and xyln-xylo, were constructed by linking the catalytic portion of a xylanase (xyln) to either an arabinofuranosidase (ara) or a xylosidase (xylo) with a flexible peptide linker. The recombinant parental enzymes and chimeras were produced in E. coli at high levels and purified for characterization of their enzymatic and kinetic properties as well as activities on natural substrates. The chimeras closely resemble the parental enzymes or their mixtures with regard to protein properties. They share similar temperature profiles and have similar catalytic efficiencies as the parental enzymes when assayed using substrates 4-nitrophenyl-alpha-L-arabinofuranoside or 2-nitrophenyl- beta-D-xylopyranoside. The chimeras also show unique enzymatic characteristics. In xylanase activity assays using Remazol Brilliant Blue-xylan, while the parental xylanase has a pH optimum of pH 8, the chimeras showed shifted pH optima as a consequence of significantly increased activity at pH 6 (the optimal pH for ara and xylo). Both chimeras exhibited additive effects of the parental enzymes when assayed at wide ranges of pH and temperatures. The xyln-xylo chimera had the same activities as the xyln/xylo mixture in hydrolyzing the natural substrates oat spelt xylan and wheat arabinoxylan. Compared to the xyln/ara mixture, the xyln-ara chimera released the same amounts of xylose from oat spelt xylan and approximately 30% more from wheat arabinoxylan at pH 6. Our results demonstrate the feasibility and advantages of generating bifunctional enzymes for the improvement of xylan bioconversion.  相似文献   

6.
The Clostridium stercorarium xylanase Xyn10B is a modular enzyme comprising two thermostabilizing domains, a family 10 catalytic domain of glycosyl hydrolases, a family 9 carbohydrate-binding module (CBM), and two S-layer homologous (SLH) domains [Biosci. Biotechnol. Biochem., 63, 1596-1604 (1999)]. To investigate the role of this CBM, we constructed two derivatives of Xyn10B and compared their hydrolytic activity toward xylan and some preparations of plant cell walls; Xyn10BdeltaCBM consists of a catalytic domain only, and Xyn10B-CBM comprises a catalytic domain and a CBM. Xyn10B-CBM bound to various insoluble polysaccharides including Avicel, acid-swollen cellulose, ball-milled chitin, Sephadex G-25, and amylose-resin. A cellulose binding assay in the presence of soluble saccharides suggested that the CBM of Xyn10B had an affinity for even monosaccharides such as glucose, galactose, xylose, mannose and ribose. Removal of the CBM from the enzyme negated its cellulose- and xylan-binding abilities and severely reduced its enzyme activity toward insoluble xylan and plant cell walls but not soluble xylan. These findings clearly indicated that the CBM of Xyn10B is important in the hydrolysis of insoluble xylan. This is the first report of a family 9 CBM with an affinity for insoluble xylan in addition to crystalline cellulose and the ability to increase hydrolytic activity toward insoluble xylan.  相似文献   

7.
The C-terminal family 9 carbohydrate-binding module of xylanase 10A from Thermotoga maritima (CBM9-2) binds to amorphous cellulose, crystalline cellulose, and the insoluble fraction of oat spelt xylan. The association constants (K(a)) for adsorption to insoluble polysaccharides are 1 x 10(5) to 3 x 10(5) M(-1). Of the soluble polysaccharides tested, CBM9-2 binds to barley beta-glucan, xyloglucan, and xylan. CBM9-2 binds specifically to the reducing ends of cellulose and soluble polysaccharides, a property that is currently unique to this CBM. CBM9-2 also binds glucose, xylose, galactose, arabinose, cellooligosaccharides, xylooligosaccharides, maltose, and lactose, with affinities ranging from 10(3) M(-1) for monosaccharides to 10(6) M(-1) for disaccharides and oligosaccharides. Cellooligosaccharides longer than two glucose units do not bind with improved affinity, indicating that cellobiose is sufficient to occupy the entire binding site. In general, the binding reaction is dominated by favorable changes in enthalpy, which are partially compensated by unfavorable entropy changes.  相似文献   

8.
A thermostable, alkaline active xylanase was purified to homogeneity from the culture supernatant of an alkaliphilic Bacillus halodurans S7, which was isolated from a soda lake in the Ethiopian Rift Valley. The molecular weight and the pI of this enzyme were estimated to be around 43 kDa and 4.5, respectively. When assayed at 70 °C, it was optimally active at pH 9.0–9.5. The optimum temperature for the activity was 75 °C at pH 9 and 70 °C at pH 10. The enzyme was stable over a broad pH range and showed good thermal stability when incubated at 65 °C in pH 9 buffer. The enzyme activity was strongly inhibited by Mn2+. Partial inhibition was also observed in the presence of 5 mM Cu2+, Co2+ and EDTA. Inhibition by Hg2+ and dithiothreitol was insignificant. The enzyme was free from cellulase activity and degraded xylan in an endo-fashion.  相似文献   

9.
A family 2b carbohydrate-binding module from Streptomyces thermoviolaceus STX-II was fused at the carboxyl-terminus of XynB, a thermostable and single domain family 10 xylanase from Thermotoga maritima, to create a chimeric xylanase. The chimeric enzyme (XynB-CBM2b) was purified and characterized. It displayed a pH-activity profile similar to that of XynB and was stable up to 90 degrees C. XynB-CBM2b bound to insoluble birchwood and oatspelt xylan. Whereas its hydrolytic activities toward insoluble xylan and p-nitrophenyl-beta-xylopyranoside were similar to those of XynB, its activity toward soluble xylan was moderately higher than that of XynB.  相似文献   

10.
A novel, ultra-large xylanolytic complex (xylanosome) from Streptomyces olivaceoviridis E-86 was purified to homogeneity by ammonium sulfate precipitation and Sephacryl S-300 gel filtration chromatography. The purified xylanosome appeared as a single protein band on the non-denaturing (native) polyacrylamide gel electrophoresis (PAGE) gel with a molecular mass of approximately 1200 kDa. The optimal temperature and pH for xylanase activity was 60 °C and pH 6.0, respectively. The xylanase activity was stable within pH 4.1–10.3. It was stable up to 60 °C at pH 6.0. The xylanosome was highly specific towards oat-spelt xylan, and showed low activity towards corncob powder, but exhibited very low activity towards lichenan, CMC and p-nitrophenyl derivatives. Apparent Km values of the xylansosome for birchwood, beechwood, soluble oat-spelt and insoluble oat-spelt xylans were 2.5, 3.6, 1.7 and 4.9 mg ml−1, respectively. The main hydrolysis products of birchwood xylan were xylotriose, xylobiose and xylose. Analysis of the products from wheat arabinoxylan degradation by xylanosome confirmed that the enzyme had endoxylanase and debranching activities, with xylotriose, xylobiose, xylose and arabinose as the main degradation products. These unique properties of the purified xylanosome from Streptomyces olivaceoviridis E-86 make this enzymatic complex attractive for biotechnological applications.  相似文献   

11.
海栖热袍菌内切葡聚糖酶Cel12B是极耐热胞外酶,氨基酸序列分析表明不含有纤维素结合结构域(CBD),对结晶纤维素无活性,但同样菌种来源的木聚糖酶XynA有催化结构域和纤维素结合结构城。用同样极耐热酶CBD区域和Cel12B融合构建重组质粒pET-20b-Cel12B-CBD,经诱导表达后,对结晶纤维素有活性,酶学特性研究表明:最适反应温度为100℃、最适pH为5.8、在pH4.5~7.0时酶活力稳定,90℃保温2h仍有87%的酶活。  相似文献   

12.
When grown on arabinoxylan as the sole carbon source, the cereal phytopathogen Fusarium graminearum expresses four xylanases. Cloning and heterologous expression of the corresponding xylanase encoding genes and analysis of general biochemical properties, substrate specificities and inhibition sensitivities revealed some marked differences. XylA and XylB are glycoside hydrolase family (GH) 11 xylanases, while XylC and XylD belong to GH10. pH and temperature for optimal activity of the enzymes were between 6.0 and 7.0 and 40 °C, respectively. Interestingly, XylC displayed remarkable pH stability as it retained most of its activity even after pre-incubation at pH 1.0 and 13.0 for 120 min at room temperature. All xylanases hydrolysed xylotetraose, xylopentaose and xylohexaose, but to different extents, while only XylC and XylD hydrolysed xylotriose. The two GH10 xylanases released a higher percentage of smaller products from xylan and xylo-oligosaccharides than did their GH11 counterparts. Analysis of kinetic properties revealed that wheat arabinoxylan is the favoured XylC substrate while XylA and XylB prefer sparsely substituted oat spelt xylan. XylC and XylD were inhibited by xylanase inhibiting protein (XIP), while XylA and XylB were sensitive to Triticum aestivum xylanase inhibitor (TAXI). Because of its pH stability and preference for arabinoxylan, XylC is a valuable candidate for use in biotechnological applications.  相似文献   

13.
The cellulose-binding proteins, CBPA and CBPB, of rumen cellulolytic bacterium Eubacterium cellulosolvens 5 were biochemically characterized, and their properties were compared. Recombinant CBPA and CBPB were a typical 1,4-beta-endoglucanase. Both proteins bound to insoluble polysaccharides such as Avicel cellulose, acid swollen cellulose, lichenan, chitin, and oat spelt xylan. On the other hand, only recombinant CBPB bound to agarose and starch.  相似文献   

14.
Glycoside hydrolases often contain multiple copies of noncatalytic carbohydrate binding modules (CBMs) from the same or different families. Currently, the functional importance of this complex molecular architecture is unclear. To investigate the role of multiple CBMs in plant cell wall hydrolases, we have determined the polysaccharide binding properties of wild type and various derivatives of Cellulomonas fimi xylanase 11A (Cf Xyn11A). This protein, which binds to both cellulose and xylan, contains two family 2b CBMs that exhibit 70% sequence identity, one internal (CBM2b-1), which has previously been shown to bind specifically to xylan and the other at the C-terminus (CBM2b-2). Biochemical characterization of CBM2b-2 showed that the module bound to insoluble and soluble oat spelt xylan and xylohexaose with K(a) values of 5.6 x 10(4), 1.2 x 10(4), and 4.8 x 10(3) M(-1), respectively, but exhibited extremely weak affinity for cellohexaose (<10(2) M(-1)), and its interaction with insoluble cellulose was too weak to quantify. The CBM did not interact with soluble forms of other plant cell wall polysaccharides. The three-dimensional structure of CBM2b-2 was determined by NMR spectroscopy. The module has a twisted "beta-sandwich" architecture, and the two surface exposed tryptophans, Trp 570 and Trp 602, which are in a perpendicular orientation with each other, were shown to be essential for ligand binding. In addition, changing Arg 573 to glycine altered the polysaccharide binding specificity of the module from xylan to cellulose. These data demonstrate that the biochemical properties and tertiary structure of CBM2b-2 and CBM2b-1 are extremely similar. When CBM2b-1 and CBM2b-2 were incorporated into a single polypeptide chain, either in the full-length enzyme or an artificial construct comprising both CBM2bs covalently joined via a flexible linker, there was an approximate 18-20-fold increase in the affinity of the protein for soluble and insoluble xylan, as compared to the individual modules, and a measurable interaction with insoluble acid-swollen cellulose, although the K(a) (approximately 6.0 x 10(4) M(-1)) was still much lower than for insoluble xylan (K(a) = approximately 1.0 x 10(6) M(-1)). These data demonstrate that the two family 2b CBMs of Cf Xyn11A act in synergy to bind acid swollen cellulose and xylan. We propose that the increased affinity of glycoside hydrolases for polysaccharides, through the synergistic interactions of CBMs, provides an explanation for the duplication of CBMs from the same family in some prokaryotic cellulases and xylanases.  相似文献   

15.
Ferulic Acid Esterase Activity from Schizophyllum commune   总被引:7,自引:3,他引:4       下载免费PDF全文
Schizophyllum commune produced an esterase which released ferulic acid from starch-free wheat bran and from a soluble ferulic acid-sugar ester that was isolated from wheat bran. The preferred growth substrate for the production of ferulic acid esterase was cellulose. Growth on xylan-containing substrates (oat spelt xylan and starch-free wheat bran) resulted in activity levels that were significantly lower than those observed in cultures grown on cellulose. Similar observations were made for endoglucanase, p-nitrophenyllactopyranosidase, xylanase, and acetyl xylan esterase. Of the enzymes studied, only arabinofuranosidase was produced at maximum levels during growth on xylan-containing materials. Ferulic acid esterase that had been partially purified by DEAE chromatography released significant amounts of ferulic acid from wheat bran only in the presence of a xylanase-rich fraction, indicating that the esterase may not be able to readily attack high-molecular-weight substrates. The esterase acted efficiently, without xylanase addition, on a soluble sugar-ferulic acid substrate.  相似文献   

16.
Abstract A neutral endoxylanase from a culture filtrate of Aspergillus nidulans grown on oat spelt xylan was purified to apparent homogeneity. The purified enzyme showed a single band on SDS-PAGE with a molecular mass of 22,000 and had an isoelectric point of 6.4. The enzyme was a non-debranching endoxylanase highly specific for xylans and completely free from cellulolytic activity. The xylanase showed an optimum activity at pH 5.5 and 62°C and had a K m of 4.2 mg oat spelt xylan per ml and a V max of 710 μmol min−1 (mg protein)−1.  相似文献   

17.
A xylanase gene, xyn-b39, coding for a multidomain glycoside hydrolase (GH) family 10 protein was cloned from the genomic DNA of the alkaline wastewater sludge of a paper mill. Its deduced amino acid sequence of 1,481 residues included two carbohydrate-binding modules (CBM) of family CBM_4_9, one catalytic domain of GH 10, one family 9 CBM and three S-layer homology (SLH) domains. xyn-b39 was expressed heterologously in Escherichia coli, and the recombinant enzyme was purified and characterized. Xyn-b39 exhibited maximum activity at pH 7.0 and 60 °C, and remained highly active under alkaline conditions (more than 80 % activity at pH 9.0 and 40 % activity at pH 10.0). The enzyme was thermostable at 55 °C, retaining more than 90 % of the initial activity after 2 h pre-incubation. Xyn-b39 had wide substrate specificity and hydrolyzed soluble substrates (birchwood xylan, beechwood xylan, oat spelt xylan, wheat arabinoxylan) and insoluble substrates (oat spelt xylan and wheat arabinoxylan). Hydrolysis product analysis indicated that Xyn-b39 was an endo-type xylanase. The K m and V max values of Xyn-b39 for birchwood xylan were 1.01 mg/mL and 73.53 U/min/mg, respectively. At the charge of 10 U/g reed pulp for 1 h, Xyn-b39 significantly reduced the Kappa number (P < 0.05) with low consumption of chlorine dioxide alone.  相似文献   

18.
A growth medium was developed for maximal production in batch culture of extracellular xylanase and beta-xylosidase by Aspergillus awamori CMI 142717 and a mutant (AANTG 43) derived from the wild-type strain. The optimum pH for the production of xylanase and beta-xylosidase was 4.0. The best temperature of xylanase production was 30 degrees C; 35 degrees C was optimal for beta-xylosidase. Protease production was never completely suppressed under any of the conditions tested. However, protease titre was 3.5-fold less than the control in medium in which proteose peptone and yeast extract were omitted: the level of xylanase was not affected (8.6 U mL(-1)) but beta-xylosidase titre was increased 4.7-fold to 1.5 U mL(-1). When corn steep liquor was used as the sole nitrogen source, xylanse and beta-xylosidase titres were further increased by 1.5- and 1.9-fold, respectively. Of the carbon sources investigated, ball-milled oat straw or oat spelt xylan produced the highest titres of xylanse and beta-xylosidase. None of the soluble carbon sources investigated produced the high titres of xylanase or beta-xylosidase induced by either oat straw for xylanse and beta-xylosidase was 2% and the optimum spore inoculum was between 10(6) and 10(7) spores/mL(-1) final concentration. The level of xylanse activity obtained in the culture filtrates of the mutant was a remarkable 820 U mL(-1) when the reducing sugar released was measured by the dinitrosalicylic acid method. This enzyme titre would appear to be the highest reported so far. The xylanases system contained the correct balance of enzymes to effect extensive hydrolysis of oat spelt xylan. The protease titre was very low.  相似文献   

19.
Abstract Prevotella ruminicola B14 is a strictly anaerobic, Gram-negative, polysaccharide-degrading rumen bacterium. Xylanase activity in this strain was found to be inducible, the specific activity of cells grown on xylan being increased at least 20-fold by comparison with cells grown on glucose. Ten bacteriophage clones expressing xylanase activity were isolated from a A EMBL3 genomic DNA library of P. ruminicola B14. These clones were shown to represent four distinct chromosomal regions, based on restriction enzyme analysis and DNA hybridisation. Three groups of clones encoded activity against oat spelt xylan but not carboxymethylcellulose (CMC). In one of these groups, represented by clone 5, activities against pNP-arabinofuranoside and pNP-xyloside were found to be encoded separately from endoxylanase activity. The fourth region encoded activity against CM cellulose and lichenan, in addition to xylan, and contains an endoglucanase/xylanase gene isolated previously.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号