首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosystem II particles have been prepared from spinach and Chlamydomonas reinhardii CW 15 thylakoids. Photosynthetic electron transport in these particles is inhibited by phenolic compounds like dinoseb, but not by atrazine and diuron. The labeling patterns obtained by photoaffinity labels derived from either atrazine (azido-atrazine) or the phenolic herbicide dinoseb (azido-dinoseb) were compared in photosystem II particles and thylakoids. Whereas azido-atrazine in thylakoids of spinach as well as of Chlamydomonas labels a 32-kilodalton peptide, this label does not react in photosystem II particle preparations. Azido-dinoseb, however, labels both the thylakoid membranes and the particles, predominantly polypeptides in the 40-53 kilodalton molecular weight region. Since the latter polypeptides are probably part of the reaction center of photosystem II, it is suggested that phenolic compounds have their inhibition site within the reaction center complex. This indicates that the atrazine-binding 32-kilodalton peptide is either absent or functionally inactive in photosystem II particles, whereas the phenol inhibitor-binding peptides are not.  相似文献   

2.
The polypeptides of etioplast and chloroplast fractions, purified on Percoll discontinuous gradient, were phosphorylated in vitro using (γ-32P)ATP, resolved by SDS-PAGE and autoradiographed. In general, about 15-18 phosphopolypeptides in the range of 14-150 kD were distinctly visible in autoradiograms of both organelle fractions with varying degree of radiolabel incorporation. Although short-term irradiation with red or far-red light did not have any significant effect on phosphorylation status of etioplast polypeptides, in vivo irradiation with 1 h white light, followed by in vitro phosphorylation, decreased phosphorylation of a 116 kD polypeptide and increased the phosphorylation of polypeptides of 38 kD and a doublet around 20 kD. Strikingly, the phosphorylation status of 116 kD etioplast polypeptide was adversely affected by Ca2+ as well, and this phosphopolypeptlde was not distinctly visible in the autoradiogram of the chloroplast fraction proteins. However, in vitro phosphorylation of 98, 57 and 50 kD polypeptides of both etioplast and chloroplast fractions was found to be Ca2+ dependent. Unlike Ca2+, 3′,5′-cyclic AMP down-regulated the phosphorylation of several polypeptides of both etioplasts and chloroplasts, including 98 and 50 kD, and up-regulated the phosphorylation of 32 and 57 kD polypeptides. The significance of these observations on changes in phosphoprotein profile of etioplasts and chloroplasts, as influenced by light, Ca2+ and cyclic nucleotides, has been discussed.  相似文献   

3.
Allophycocyanin was isolated from dissociated phycobilisomes from Nostoc sp. and was separated into allophycocyanin I, II, III, and B as described elsewhere. If the separation of the proteins following phycobilisome isolation is done in the presence of the protease inhibitor, phenylmethylsulfonylfluoride, associated with allophycocyanin I are two colored polypeptides of 95 kilodalton (kD) and 80 kD, belonging to the class of Group I polypeptides as defined by Tandeau de Marsac and Cohen-Bazire (Proc Natl Acad Sci USA 1977 74: 1635-1639). Allophycocyanin I has a fluorescence maximum of 680 nanometers as do intact phycobilisomes and has thus been suggested to be the final emitter of excitation energy in phycobilisomes. Thylakoid membranes washed in low ionic strength buffer containing phenylmethylsulfonylfluoride lose all biliproteins, but retain the 95 kD and 80 kD polypeptides. As suggested by Tandeau de Marsac and Cohen-Bazire, these are likely to be the polypeptides involved in binding the phycobilisome to the membrane. As these polypeptides are isolated with allophycocyanin I, structural evidence is provided for placing allophycocyanin I as the bridge between the phycobilisome and the membrane. These Group I polypeptides and the 29 kD polypeptide (involved in rod attachment to the APC core) are particularly susceptible to proteolytic breakdown. It is thought that in vivo the active protease may be selectively attacking these polypeptides to detach the phycobilisome from the membrane and release the phycoerythrin and phycocyanin containing rods from the allophycocyanin core for greater susceptibility of the biliproteins to protease attack.  相似文献   

4.
Obokata J 《Plant physiology》1987,84(2):535-540
Synthesis and assembly of photosystems (PS) I and II polypeptides in etiochloroplasts isolated from greening wheat (Triticum aestivum L. cv Norin 61) seedlings were studied. The isolated etiochloroplasts synthesized PSI polypeptides of 66 and 15 kilodaltons, PSII polypeptides of 46 and 42 kilodaltons, and atrazine-binding 34 to 32 kilodalton polypeptide. Their assembly processes in the thylakoid membrane were studied by pulse-chase labeling with [35S]methionine, mild solubilization of the thylakoid membrane with Triton X-100, sucrose density gradient centrifugation, and polyacrylamide gel electrophoresis. The newly synthesized polypeptides of 66, 46, 42, 34, and 32 kilodaltons were first integrated into the complexes of 7.5, 5.9, 7.5, 6.3, and 7.5 Svedberg units, respectively, in 20 minutes. After the chase with excess amount of methionine for 100 min, they were found in complexes of 9.5, 9.1, 9.1, 9.1, and 9.1 Svedberg units, respectively. In this condition, stained polypeptides of PSI and PSII were found in the complexes of 11.1 and 10.3 Svedberg units, respectively. These results indicated that newly synthesized PSI or PSII polypeptides are integrated into intermediate complexes, but not complete complexes in the isolated etiochloroplasts. The relationship between the processing of the atrazine-binding 32 kilodalton polypeptide and its assembly into the PSII complex is also discussed.  相似文献   

5.
《Insect Biochemistry》1987,17(3):401-415
Phosphorylation of vitellogenin (yolk protein precursor) and vitellin (major yolk protein) polypeptides of Leucophaea maderae was studied by [32P]ortho phosphate labeling and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) autoradiography. The vitellogenin molecule was isolated from the hemolymph and fat body by antibody precipitation and high-performance liquid chromatography (HPLC), and shown to consist of at least five polypeptides (“subunits”) which had apparent molecular masses of 155, 112, 95, 92 and 54 kD. Labeling studies with 32P showed that the covalently attached phosphorus was distributed in an uneven fashion among the five polypeptides. The two heavily-phosphorylated polypeptides, 112 and 54 kD, corresponded to the large and small, mature vitellin subunits. Quantitative SDS-PAGE analysis of long-term 32P-labeled vitellin showed that these large and small “subunits” contained 55 and 30%, respectively, of the total radioactivity.When fat body was pulse-labeled with 32P we found a heavily-phosphorylated intracellular 215 kD polypeptide which was precipitable with anti-vitellogenin. The synthesis of this intracellular precursorform of vitellogenin (pre-Vg) was under absolute juvenile hormone control. In vitro32P pulse-chase experiments showed that pre-Vg was proteolytically processed within the fat body into some (or possibly all) of the mature vitellogenin subnits. Furthermore, peptide mapping confirmed that all of the phosphorylated vitellogenin subunits were derived from pre-Vg. Since previous studies have shown that phosphoserine residues account for essentially all of the covalently-attached phosphorus of the native vitellogenin molecule, we speculate that the asymmetric pattern of vitellogenin and vitellin subunit-phosphorylation is due to an uneven distribution of phosphoserine residues along the initial pre-Vg polypeptide chain. Finally, we conclude that phosphorylation of vitellogenin occurred post-translationally in the fat body endoplasmic reticulum because we could identify 32P-labeled pre-Vg in purified microsomal vesicles but not in nascent vitellogenin polypeptide chains attached to vitellogenin polyribosomes.  相似文献   

6.
Previous studies have purified from brain a Ca2+/calmodulin-dependent protein kinase II (designated CaM-kinase II) that phosphorylates synapsin I, a synaptic vesicle-associated phosphoprotein. CaM-kinase II is composed of a major Mr 50K polypeptide and a minor Mr 60K polypeptide; both bind calmodulin and are phosphorylated in a Ca2+/calmodulin-dependent manner. Recent studies have demonstrated that the 50K component of CaM-kinase II and the major postsynaptic density protein (mPSDp) in brain synaptic junctions (SJs) are virtually identical and that the CaM-kinase II and SJ 60K polypeptides are highly related. In the present study the photoaffinity analog [alpha-32P]8-azido-ATP was used to demonstrate that the 60K and 50K polypeptides of SJ-associated CaM-kinase II each bind ATP in the presence of Ca2+ plus calmodulin. This result is consistent with the observation that these proteins are phosphorylated in a Ca2+/calmodulin-dependent manner. Experiments using 32P-labeled peptides obtained by limited proteolysis of 60K and 50K polypeptides from SJs demonstrated that within each kinase polypeptide the same peptide regions contain both autophosphorylation and 125I-calmodulin binding sites. These results suggested that the autophosphorylation of CaM-kinase II could regulate its capacity to bind calmodulin and, thus, its capacity to phosphorylate substrate proteins. By using 125I-calmodulin overlay techniques and sodium dodecyl sulfate-polyacrylamide gel electrophoresis we found that phosphorylated 50K and 60K CaM-kinase II polypeptides bound more calmodulin (50-70%) than did unphosphorylated kinase polypeptides. Levels of in vitro CaM-kinase II activity in SJs were measured by phosphorylation of exogenous synapsin I. SJs containing highly phosphorylated CaM-kinase II displayed greater activity in phosphorylating synapsin I (300% at 15 nM calmodulin) relative to control SJs that contained unphosphorylated CaM-kinase II. The CaM-kinase II activity in phosphorylated SJs was indistinguishable from control SJs at saturating calmodulin concentrations (300-1,000 nM). These findings show that the degree of autophosphorylation of CaM-kinase II in brain SJs modulates its in vitro activity at low and possibly physiological calmodulin concentrations; such a process may represent a mechanism of regulating this kinase's activity at CNS synapses in situ.  相似文献   

7.
A sulfhydryl-endopeptidase was purified as a 33 kilodalton (kD) mass polypeptide from cotyledons of Vigna mungo seedlings. Immunoblot analysis with antiserum made against the purified enzyme showed that the sulfhydryl-endopeptidase was synthesized only in the cotyledons during germination and that the amount of the enzyme increased until 4 days after imbibition and decreased thereafter. Next, an RNA fraction was prepared from cotyledons of 3 day old seedlings and translated in a wheat germ system. The synthesis of a 45 kD polypeptide was shown by the analysis of its translation products by immunoprecipitation with the antiserum to the endopeptidase and gel electrophoresis. When the RNA fraction was translated in the presence of canine microsomal membranes, a smaller polypeptide, having a 43 kD molecular mass, was detected as the translation product. When membrane-bound polysomes, but not free polysomes, prepared from cotyledons were used for translation in the wheat germ system, both the 43 and 45 kD polypeptides were synthesized. By incubation of a crude enzyme extract from cotyledons at 5 ± 1°C at neutral pH, the 43 kD polypeptide was sequentially cleaved to the 33 kD polypeptide via 39 and 36 kD intermediate polypeptides. The endopeptidase was activated simultaneously with the processing. Two-dimensional polyacrylamide gel electrophoresis showed that the 33 kD polypeptide was the fully activated form of the enzyme, whereas little or no activity was detected in other forms. From the present results, we postulate that the sulfhydryl-endopeptidase is first synthesized as the 45 kD precursor with a 2 kD signal peptide being cleaved, and that the 43 kD polypeptide is further cleaved to give the 33kD mature enzyme.  相似文献   

8.
A monoclonal antibody, FAC2, was isolated by immunization of mice with a Photosystem II core preparation followed by splenic fusion and standard monoclonal antibody screening and production techniques. This antibody recognizes the 49-kDa polypeptide of Photosystem II which is the apoprotein of CPal. The antigenic determinant recognized by this antibody lies on a cyanogen bromide fragment which appears as a doublet with an apparent molecular mass of 14.5 kDa. FAC2 was used to follow the effects of trypsin on the 49-kDa polypeptide in a membrane environment. Our results indicate that the extrinsic polypeptides of Photosystem II which are known to be involved in oxygen evolution protect the 49-kDa polypeptide from tryptic attack. Additionally, Photosystem II membranes which are treated with alkaline Tris exhibit a large increase in the ability to bind FAC2. This increase is not observed with membranes treated with calcium chloride or sodium chloride. These results indicate that the 49-kDa polypeptide may be at least structurally associated with the component(s) responsible for oxygen evolution.  相似文献   

9.
A collection of 17 monoclonal antibodies elicited against the light-harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC-II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b.  相似文献   

10.
11.
Structural Relationship among the Rice Glutelin Polypeptides   总被引:1,自引:1,他引:0  
When the glutelin protein fraction of rice (Oryza sativa L.) seeds was fractionated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, three size classes of proteins, 51 kilodaltons (kD), 34 to 37 kD, and 21 to 22 kD, as well as a contaminating prolamine polypeptide of 14 kD were detected. Antibodies were raised against these proteins and employed in studies to determine whether a precursor-product relationship existed among the glutelin components. Antibodies of the 34 to 37 kD and 21 to 22 kD polypeptides strongly reacted with the 51 kD protein, and conversely, anti-51 kD protein cross reacted with both of the putative subunits. Immunoprecipitation of in vitro translated products resulted in the synthesis of only the precursor form, indicating that the α and β subunits are proteolytic products of the 51 kD precursor protein. The poly(A)+ RNA directed in vitro translated product was about 2000 daltons larger than both the authentic glutelin precursor and the in vitro translated product from polysome run-off synthesis. Western blot analysis of the 34 to 37 kD and 21 to 22 kD polypeptides partially digested with Staphylococcus aureus V8 protease revealed distinct patterns indicating that these proteins are structurally unrelated. As observed for the glutelins, the rice prolamines are also synthesized as a precursor of 16 kD, 2000 daltons larger than the mature polypeptide. Addition of dog pancreatic microsomal membranes to a wheat germ protein translation system resulted in the processing of the prolamine preprotein but not the preproglutelin to the mature form.  相似文献   

12.
Summary Biosynthesis of ceruloplasmin was studied in wheat germ extract programmed with polysomal RNA from rat liver. Optimal potassium concentration for the total protein-synthesizing activity and for the synthesis of immunoreactive ceruloplasmin was 96 and 186 mM respectively. 7-methylguanosine 5′-monophosphate caused two-fold inhibition of the cell-free synthesis of ceruloplasmin. Immunoprecipitated ceruloplasmin that was synthesized at optimal potassium concentration was a homogeneous polypeptide of a molecular weight about 84 kD. The addition of membrane fractions from rat liver to the incubation mixture caused the conversion of the 84 kD polypeptide into 80 kD and 65 kD polypeptides that are similar to proceruloplasmins synthesized in rat liver during in vivo pulse labelling. The suggestion is made that 84 kD polypeptide is a primary product of the translation of ceruloplasmin mRNA (preproceruloplasmin).  相似文献   

13.
Phosphoproteins of the Adrenal Chromaffin Granule Membrane   总被引:4,自引:1,他引:3  
A fraction of chromaffin granule membranes contained a number of substrates for endogenous protein kinase activity as well as endogenous phosphatase activity. The major 32P-labelled polypeptide of molecular weight 43,000 appeared to be the alpha-subunit of pyruvate dehydrogenase of residual mitochondria. Several polypeptides showed cyclic AMP stimulation of phosphorylation of which the major polypeptide of molecular weight 59,000 shows half-maximal phosphorylation with 0.49 microM cyclic AMP. The phosphorylation of several other polypeptides is inhibited at high cyclic AMP concentrations. From studies with immunoprecipitation and two-dimensional electrophoresis it was found that alpha- and beta-tubulin and actin were absent from the granule membranes. However 32P labelling of a proportion of the copies of dopamine-beta-hydroxylase was demonstrated. The majority of the substrates for endogenous protein kinase activity are probably on the cytoplasmic side of the granule membrane.  相似文献   

14.
Mitochondria isolated from 4-day-old dark-grown wheat seedlings were purified by self-generating Percoll gradient. Phosphorylation reaction was carried out in vitro with the addition of [ c-32P]ATP and polypeptides resolved by 50S-PAGE were subjected to autoradiography. Amongst endogenous polypeptides phosphorylated, four polypeptides of 120, 66, 43 and 21 kD were prominent. Addition of Mg2+ (5 mM) caused dephosphorylation of 120 and 66 kO polypeptides but, simultaneously, induced/enhanced the phosphorylation of some polypeptides, with the effect being more pronounced on a 67 kD species. The phosphorylation of 120 kD species and a few other polypeptides was also down-regulated and that of a 18 kD polypeptide was up-regulated by Ca2+. The present study provides evidence that phosphorylation status of mitochondrial proteins is regulated by Mg2+ and/or Ca2+-dependent phosphatase(s) and protein kinase(s).  相似文献   

15.
《BBA》1986,851(2):202-208
Photoaffinity labeling of Synechococcus Photosystem (PS) II preparations with radioactive azido-derivatives of three herbicides and of plastoquinone was carried out to identify herbicide and plastoquinone-binding proteins. [14C]Azido-atrazine and [14C]azido-monuron specifically labeled the 28 kDa polypeptide of the PS II reaction center complex, which is sensitive to 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). No specific labeling of this polypeptide with azido-atrazine was found in CP2-b (PS II reaction center lacking the 40 kDa subunit) which is insensitive to DCMU. [3H]Azido-dinoseb reacted with the 28 kDa polypeptide and the 47 kDa chlorophyll-carrying protein. The labeling with [3H]azido-plastoquinone resulted in the incorporation of the radioactivity exclusively into the 47 kDa polypeptide. It is concluded that the 28 kDa polypeptide is the herbicide-binding protein of the cyanobacterium and that the 47 kDa polypeptide has a binding site for plastoquinone and for phenol-type herbicides.  相似文献   

16.
Low molecular weight GTP-binding proteins and their cellular interactions were examined in cardiac muscle. Heart homogenate was separated into various subcellular fractions by differential and sucrose density gradient centrifugation. Various fractions were separated by sodium dodecyl sulfate-gel electrophoresis, blotted to nitrocellulose, and GTP-binding proteins detected by incubating with [alpha-32]GTP. Three polypeptides of M(r) 23,000, 26,000, and 29,000 were specifically labeled with [alpha-32P]GTP in all the fractions examined and enriched in sarcolemmal membranes. The 23-kDa polypeptide was labeled to a higher extent with [alpha-32P]GTP than the 26- and 29-kDa polypeptides. A polypeptide of M(r) 40,000 was weakly labeled with [alpha-32P]GTP in the sarcolemmal membrane and tentatively identified as Gi alpha by immunostaining with anti-Gi alpha antibodies. Cytosolic GTP-binding proteins were labeled with [alpha-32P]GTP and their potential sites of interaction investigated using the blot overlay approach. A polypeptide of 32 kDa present in sarcolemmal membranes, intercalated discs, and enriched in heart gap junctions was identified as a major site of interaction. The low molecular weight GTP-binding proteins associated with the 32-kDa polypeptide through a complex involving cytosolic components of M(r) 56,000, 36,000, 26,000, 23,000, and 12,000. A monoclonal antibody against connexin 32 from liver strongly recognized the 32-kDa polypeptide in heart gap junctions, whereas polyclonal antibodies only weakly reacted with this polypeptide. The low molecular weight GTP-binding proteins associated with a 32-kDa polypeptide in liver membranes that was also immunologically related to connexin 32. These results indicate the presence of a subset of low molecular weight GTP-binding proteins in a membrane-associated and a cytoplasmic pool in cardiac muscle. Their association with a 32-kDa component that is related to the connexins suggests that these polypeptides may be uniquely situated to modulate communication at the cell membrane.  相似文献   

17.
The protein moiety of the two major chlorophyll-protein complexes associated with chloroplast membranes of outer, dark green leaves of a romaine lettuce shoot (Lactuca sativa L. var. Romana) has been analyzed by discontinuous sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis. Complex II, also termed light-harvesting chlorophyll-protein complex, is shown to consist of a major polypeptide of 25 kilodaltons (kD) and two minor ones of 27.5 and 23 kD. The 25 kD subunit is the single largest polypeptide component of the chloroplast membranes, accounting for about 25% of their total protein. Complex I contains only high molecular weight subunits, the major one being at 67 kD, these subunits representing only a small percentage of the chloroplast membrane total protein.  相似文献   

18.
Chromatographic and electrophoretic studies have shown that the subunits of the crystalloid protein, isolated from mature castor bean (Ricinus communis L. cv Hale) seed endosperm protein bodies, are heterogeneous with molecular weights in the range 49 to 53.5 kilodaltons (kD), and are quantitatively in unequal amounts. Each subunit comprises an αβ polypeptide pair which are reduced by 2-mercaptoethanol in two subgroups with molecular weights in the 29 to 34 kD and 20.5 to 23.5 kD ranges. Subunits and corresponding polypeptide pairs are also seen to be heterogeneous in pI following isoelectric focusing. In general, large polypeptides are acidic (pI 4.8-6.2) and small polypeptides basic (pI 7.4-9.4), although overlap of some isoelectric isomers does occur, notably in polypeptides derived from subunits which are quantitatively present in smaller amounts.  相似文献   

19.
Irradiation with red light of Sorghum bicolor seedlings stimulated in vitro phosphorylation of 55 kD and several other soluble polypeptides in a development-dependent manner. The red light stimulated phosphorylation of 55 kD polypeptide was more in 6-day-old etiolated plants as compared to 5-day-old plants. The in vitro phosphorylation of 55 kD polypeptide was enhanced further when calcium was added to the extracts obtained from red light irradiated tissues of 6-day-old seedlings. This effect was inhibited in the presence of calmodulin inhibitors. There was no significant stimulation in the phosphorylation of this polypeptide by calcium in 5-day-old and 7-day-old etiolated plants. Besides 55 kD, the phosphorylation of several other polypeptides was either stimulated or inhibited by light, calcium and calmodulin inhibitors suggesting involvement of both kinases and phosphatases in light-mediated phosphorylation.  相似文献   

20.
Chloroplast membranes contain a light-harvesting pigment-protein complex (LHC) which binds chlorophylls a and b. A mild trypsin digestion of intact thylakoid membranes has been utilized to specifically alter the apparent molecular weights of polypeptides of this complex. The modified membrane preparations were analyzed for altered functional and structural properties. Cation-induced changes in room temperature fluorescence intensity and low temperature chlorophyll fluorescence emission spectra, and cation regulation of the quantum yield of photosystem I and II partial reactions at limiting light were lost following the trypsin-induced alteration of the LHC. Electron microscopy revealed that cations can neither maintain nor promote grana stacking in membranes which have been subjected to mild trypsin treatment. Freeze-fracture analysis of these membranes showed no significant differences in particle density or average particle size of membrane subunits on the EF fracture face; structural features of the modified lamellae were comparable to membranes which had been unstacked in a “low salt” buffer. Digitonin digestion of trypsin-treated membranes in the presence of cations followed by differential centrifugation resulted in a subchloroplast fractionation pattern similar to that observed when control chloroplasts were detergent treated in cation-free medium. We conclude that: (a) the initial action of trypsin at the thylakoid membrane surface of pea chloroplasts was the specific alteration of the LHC polypeptides, (b) the segment of the LHC polypeptides which was altered by trypsin is necessary for cation-mediated grana stacking and cation regulation of membrane subunit distribution, and (c) cation regulation of excitation energy distribution between photosystem I and II involves the participation of polypeptide segments of the LHC which are exposed at the membrane surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号