首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The calmodulin-stimulated ATPase of maize (Zea mays L.) coleoptiles has been purified by calcium-dependent binding to a calmodulin affinity column. In the presence of protease inhibitors (phenylmethylsulfonylfluoride and chymostatin) a polypeptide of relative molecular mass (Mr) 140000 (±10000) is obtained on sodium-dodecylsulphate polyacrylamide gels. This polypeptide is recognised specifically by an affinity-purified polyclonal antibody to mammalian calmodulin-stimulated calcium-pumping ATPases and is of similar Mr to the erythrocyte-membrane calcium pump (138000 Mr).Abbreviations EGTA ethylene glycol-bis(-aminoethylether)-N,N,N,N-tetraacetic acid - Mr apparent molecular mass - SDS sodium dodecyl sulphate  相似文献   

2.
Four proteases have been used to assess the topology of the H+-ATPase from Saccharomyces cerevisiae reconstituted into phosphatidylserine vesicles. Limited proteolysis by trypsin and alpha-chymotrypsin inactivates the enzyme and produces stable, membrane-bound fragments. Sequence analyses of these peptides have located the peptide bonds hydrolyzed. The labile bonds are on opposite sides of a central hydrophilic domain containing consensus sequences for the site of phosphorylation and fluorescein isothiocyanate binding of several related ATPases. Limited proteolysis of the ATPase by elastase cuts approximately 50 amino acids from the C terminus, leaving the remaining membrane-bound fragments active. Proteolysis by carboxypeptidase Y in the presence and absence of detergent suggests that the C terminus is on the inside of the vesicle in this reconstitution. A model for the transmembrane arrangement of the polypeptide is proposed. In this model, the C terminus is on the inside of the vesicle, the N terminus is on the outside, the ATP binding region is on the outside, and the polypeptide passes through the membrane a minimum of five times.  相似文献   

3.
4.
Plasma membrane ghosts were isolated from Candida albicans ATCC 10261 yeast cells following stabilisation of spheroplasts with concanavalin A, osmotic lysis and Percoll density gradient centrifugation. Removal of extrinsic proteins with NaCl and methyl alpha-mannoside gave increased ATPase and chitin synthase specific activities in the resultant plasma membrane fraction. Sonication of this fraction yielded unilamellar plasma membrane vesicles which exhibited ATPase and chitin synthase specific activities of 4.5-fold and 3.0-fold, respectively, over those of the plasma membrane ghosts. ATPase activity in the membrane ghosts was optimal at pH 6.4, showed high substrate specificity (for Mg X ATP) and was inhibited 80% by sodium vanadate but less than 4% by oligomycin and azide. The effects of a range of other inhibitors were also characterised. Temperature effects of ATPase activity were marked, with a maximum at 35 degrees C. Breaks in the Arrhenius plot, at 12.2 degrees C and 28.9 degrees C, coincided with endothermic heat flow peaks detected by differential scanning calorimetry. ATPase was solubilised from the plasma membranes with Zwittergent in the presence of glycerol and phenylmethylsulphonyl fluoride and partially purified by glycerol density gradient centrifugation. The solubilised enzyme hydrolysed Mg X ATP at Vmax = 20 mumol X min-1 X mg-1 in the presence of phospholipids, with optimal activity at pH 6.0--6.5.  相似文献   

5.
The plasma membrane ATPase, encoded by PMA1, is delivered to the cell surface via the secretory pathway. Previously, we characterized a temperature-sensitive pma1 mutant in which newly synthesized Pma1-7 is not delivered to the plasma membrane but is mislocalized instead to the vacuole at 37 degrees C. Several vps mutants, which are defective in vacuolar protein sorting, suppress targeting-defective pma1 by allowing mutant Pma1 to move once again to the plasma membrane. In this study, we have analyzed trafficking in the endosomal system by monitoring the movement of Pma1-7 in vps36, vps1, and vps8 mutants. Upon induction of expression, mutant Pma1 accumulates in the prevacuolar compartment in vps36 cells. After chase, a fraction of newly synthesized Pma1-7 is delivered to the plasma membrane. In both vps1 and vps8 cells, newly synthesized mutant Pma1 appears in small punctate structures before arrival at the cell surface. Nevertheless, biosynthetic membrane traffic appears to follow different routes in vps8 and vps1: the vacuolar protein-sorting receptor Vps10p is stable in vps8 but not in vps1. Furthermore, a defect in endocytic delivery to the vacuole was revealed in vps8 (and vps36) but not vps1 by endocytosis of the bulk membrane marker FM 4-64. Moreover, in vps8 cells, there is defective down-regulation from the cell surface of the mating receptor Ste3, consistent with persistent receptor recycling from an endosomal compartment to the plasma membrane. These data support a model in which mutant Pma1 is diverted from the Golgi to the surface in vps1 cells. We hypothesize that in vps8 and vps36, in contrast to vps1, mutant Pma1 moves to the surface via endosomal intermediates, implicating an endosome-to-surface traffic pathway.  相似文献   

6.
Yeast cell surface growth is accomplished by constitutive secretion and plasma membrane assembly, culminating in the fusion of vesicles with the bud membrane. Coordination of secretion and membrane assembly has been investigated by examining the biogenesis of plasma membrane ATPase (PM ATPase) in secretion-defective (sec) strains of Saccharomyces cerevisiae. PM ATPase is synthesized as a approximately 106-kD polypeptide that is not detectably modified by asparagine-linked glycosylation or proteolysis during transit to the plasma membrane. Export of the PM ATPase requires the secretory pathway. In sec1, a mutant defective in the last step of secretion, large amounts of Golgi-derived vesicles are accumulated. Biochemical characterization of this organelle has demonstrated that PM ATPase and the secretory enzyme, acid phosphatase, are transported in a single vesicle species.  相似文献   

7.
Potassium transport coupled to ATP hydrolysis has been reconstituted in proteoliposomes using a highly purified plasma membrane Mg2+-dependent ATPase of the yeast Schizosaccharomyces pombe. The ATPase activity in the incorporated enzyme was strongly stimulated (2.2-fold) by the H+-conducting agent carbonyl cyanide m-chlorophenylhydrazone (CCCP). The H+/K+ exchanger nigericin (in the presence of K+) stimulated 1.6-fold the ATPase activity. When both ionophores were added together, the stimulation was increased up to 2.7-fold. When a potassium concentration gradient (high K+ in) was applied to the proteoliposome membrane, a significant drop in the CCCP-stimulated ATPase activity was observed. Inversion of the K+ concentration gradient (high K+ out) did not decrease the stimulation by CCCP. High Na+ in also decreased the stimulation induced by CCCP in the absence but not in the presence of external K+. However, high Li+ in had no effect. Direct potassium efflux from the proteolyposomes was detected upon addition of MgATP using a selective K+ electrode. The ATP-dependent potassium efflux was abolished in CCCP and/or nigericin-pretreated proteoliposomes. However, during steady state ATP hydrolysis, a transient and small K+ efflux was observed upon addition of a CCCP pulse. I propose that the plasma membrane Mg2+-dependent ATPase in yeast cells not only carries out electrogenic H+ ejection but also drives the uptake of potassium via a voltage-sensitive gate which is closed in the absence and open in the presence of the membrane potential.  相似文献   

8.
9.
The reaction of plasma membrane ATPase from yeast with Mg2+ and Mg X ATP was studied in a temperature range of 10-30 degrees C. The random mechanism of activation by Mg2+ and the pseudocompetitive inhibition at higher concentrations was not altered when the temperature was varied, nor were the kinetic constants representing substrate binding. However, at low temperature, the affinity of the enzyme for Mg2+ is greatly reduced. The Arrhenius plot of log V vs. 1/T shows straight lines with an inflection point at 24 degrees C, which disappears in the presence of detergent. Calorimetric studies of the plasma membranes show a transition point at the same temperature. From these findings we suppose that Mg2+ is bound at a regulatory site of the ATPase, which is influenced by surrounding phospholipids.  相似文献   

10.
Inhibition of yeast plasma membrane ATPase by vanadate occurs only if either Mg2+ or MgATP2- is bound to the enzyme. The dissociation constant of the complex of vanadate and inhibitory sites is 0.14-0.20 microM in the presence of optimal concentrations of Mg2+ and of the order of 1 microM if the enzyme is saturated with MgATP2-. The dissociation constants of Mg2+ and MgATP2- for the sites involved are 0.4 and 0.62-0.73 mM, respectively, at pH 7. KCl does not increase the affinity of vanadate to the inhibitory sites as was found with (Na+ + K+)-ATPase. On the other hand, the effect of Mg2+ upon vanadate binding is similar to that upon (Na+ + K+)-ATPase, and the corresponding affinity constants of Mg2+ and vanadate for the two enzymes are of the same order of magnitude.  相似文献   

11.
Photoaffinity labeling of the active site of the yeast plasma membrane H(+)-ATPase has been studied with 2-azido-AMP and 2-azido-ATP. The ATPase activity of the enzyme decreases as the time of photolysis of the photoactive nucleotides in the presence of the enzyme increases. The covalent incorporation of [alpha-32P]2-azido-AMP into the enzyme and the inhibition of ATPase activity have comparable time courses. ATP protects the ATPase from incorporation of and photoinactivation by 2-azido-ATP or 2-azido-AMP. In the dark, 2-azido-ATP inhibits the ATPase at concentrations comparable to the apparent Michaelis constant for MgATP. After photolysis and proteolysis of the protein, three overlapping peptides labeled by the nucleotide analogues were purified by reversed-phase high performance liquid chromatography and sequenced. The peptides are derived from a region of the ATPase that is highly conserved in related cation pumps forming a phosphorylated intermediate during the catalytic cycle. Labeling with both nucleotide analogues occurs in peptides containing residues from aspartate 560 to lysine 566. The amino acids in this region conform to a consensus sequence for ATP binding derived from phosphofructokinase.  相似文献   

12.
The plasma membrane H+-ATPase from bakers' yeast was purified and reconstituted with phosphatidylserine. The steady state kinetics of ATP hydrolysis catalyzed by the H+-ATPase were studied over a wide range of Mg2+ and ATP concentrations. Whereas MgATP was the substrate hydrolyzed, excess concentrations of either Mg2+ or ATP were inhibitory. The dependence of the steady state initial velocity of ATP hydrolysis on the concentration of MgATP at a fixed concentration of Mg2+ was sigmoidal rather than hyperbolic. This precluded mechanisms involving only activation and inhibition by Mg2+ and competitive inhibition by ATP. Two alternative interpretations of these results are: 1) the enzyme possesses multiple catalytic sites which interact cooperatively; or 2) the enzyme can exist in multiple conformational states which catalyze MgATP hydrolysis by parallel pathways. The rate laws for both mechanisms are identical so that the two mechanisms cannot be distinguished on the basis of the kinetic data. The data are well fit by the rate law for these mechanisms with the inclusion of competitive inhibition by Mg2+ and ATP and an independent inhibition site for Mg2+.  相似文献   

13.
The yeast plasma membrane ATPase gene PMA1 was cloned into Escherichia coli using the high expression tac and T7 promoters. The gene product is toxic to the bacterial cell leading to very low expression levels and arrested growth of the host cell within minutes of induction. The expressed protein is immunologically cross-reactive with the yeast ATPase, comigrates with the original protein in sodium dodecyl sulfate-polyacrylamide gels, and is isolated in the E. coli membrane fraction. The partially purified protein exhibits ATPase activity.  相似文献   

14.
Toulmay A  Schneiter R 《Biochimie》2007,89(2):249-254
The proton pumping H+-ATPase, Pma1, is one of the most abundant integral membrane proteins of the yeast plasma membrane. Pma1 activity controls the intracellular pH and maintains the electrochemical gradient across the plasma membrane, two essential cellular functions. The maintenance of the proton gradient, on the other hand, also requires a specialized lipid composition of this membrane. The plasma membrane of eukaryotic cells is typically rich in sphingolipids and sterols. These two lipids condense to form less fluid membrane microdomains or lipid rafts. The yeast sphingolipid is peculiar in that it invariably contains a saturated very long-chain fatty acid with 26 carbon atoms. During cell growth and plasma membrane expansion, both C26-containing sphingolipids and Pma1 are first synthesized in the endoplasmatic reticulum from where they are transported by the secretory pathway to the cell surface. Remarkably, shortening the C26 fatty acid to a C22 fatty acid by mutations in the fatty acid elongation complex impairs raft association of newly synthesized Pma1 and induces rapid degradation of the ATPase by rerouting the enzyme from the plasma membrane to the vacuole, the fungal equivalent of the lysosome. Here, we review the role of lipids in mediating raft association and stable surface transport of the newly synthesized ATPase, and discuss a model, in which the newly synthesized ATPase assembles into a membrane environment that is enriched in C26-containing lipids already in the endoplasmatic reticulum. The resulting protein-lipid complex is then transported and sorted as an entity to the plasma membrane. Failure to successfully assemble this lipid-protein complex results in mistargeting of the protein to the vacuole.  相似文献   

15.
The yeast plasma membrane proton-pumping ATPase forms a phosphorylated intermediate during the hydrolysis of ATP. The fraction of enzyme phosphorylated during steady-state ATP hydrolysis was studied as a function of substrate concentration (MgATP), Mg2+ concentration, and pH. The dependence of the fraction of enzyme phosphorylated on the concentration of MgATP is sigmoidal, and the isotherms can be fit with parameters and mechanisms similar to those used to describe ATP hydrolysis. The isotherm is significantly more sigmoidal at pH 5.5 than at pH 6.0, with the limiting percentage (100.mol of phosphate/mol of enzyme) of enzyme phosphorylated being 70% and 6%, respectively, at the two pH values. The maxima in the steady-state rate of ATP hydrolysis occur at higher concentrations of Mg2+ and higher pH than the maxima in the fraction of enzyme phosphorylated. This suggests that the rate-determining step for ATP hydrolysis is different from that for enzyme phosphorylation and the hydrolysis of phosphoenzyme is enhanced by Mg2+ and high pH. The rate of phosphoenzyme formation was investigated with the quenched-flow method, but only a lower bound of 140 s-1 could be obtained for the rate constant at MgATP concentrations greater than 2.5 mM. Since the turnover number for ATP hydrolysis under similar conditions is 14 s-1, the rate-determining step in ATP hydrolysis occurs after enzyme phosphorylation.  相似文献   

16.
Interpeptide cross-linking of alpha-subunits with concomitant loss of Na+ + K+-transporting ATPase (Na+, K+-ATPase) activity was found when the purified lamb kidney enzyme was treated with the bifunctional thiol reagent 4,4'-difluoro-3,3'-dinitrodiphenyl sulphone (F2DNS). Several forms of the enzyme could be clearly distinguished: one binding ATP (non-phosphorylated enzyme, E1 X ATP), a phosphorylated form (E2-P) and a phosphoenzyme-ouabain complex (E2P X ouabain). A polypeptide of approx. Mr 240 000 and probable alpha 2 composition comprised up to 5-20% of the total polypeptides after reaction of the lamb kidney Na+, K+-ATPase with F2DNS. The amount of this polypeptide formed was related to the conformational state of the enzyme. The presence of adenine nucleotide greatly diminished the amount of 240 000-Mr polypeptide formed and provides evidence for an enzyme-adenine-nucleotide complex under conditions where the enzyme is not phosphorylated. F2DNS reacted with the enzyme in the presence of Mg2+, Pi and ouabain to form a new polypeptide with an approx. Mr of 116 000, and comprised 23% of the total, whereas the 240 000-Mr polypeptide comprised 9% of the total. This suggests that the 116 000-Mr polypeptide is a characteristic marker of the E2P X ouabain complex. By using specific antibodies it was established that both the 240 000- and 116 000-Mr polypeptides contained alpha-, but not beta-, subunits of the Na+, K+-ATPase.  相似文献   

17.
18.
The ATPase activity present in plasmalemma-enriched preparations from maize coleoptiles shows an optimum at pH 6, a strong dependence on Mg2+, and is stimulated by K+ and other monovalent cations, both organic and inorganic. The activation of ATPase by K+ obeys Michaelis Menten kinetics, saturation being reached at 50 mM K+ concentration. K+, Mg2+-stimulated ATPase activity is strongly inhibited by N,N-dicyclohexylcarbodiimide and by diethylstilbestrol and, to a lesser extent, by octylguanidine.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - DES diethylstilbestrol - DTE dithioerythritol - Ellmans r 5-5 dithiobis (2 nitrobenzoic) acid - FC fusicoccin - NPA naphthylphthalamic acid - OG octylguanidine - PCMBS p-chloromercuribenzensulphonate  相似文献   

19.
The H+-translocating adenosine-5'-triphosphatase (ATPase) purified from the yeast Schizosaccharomyces pombe is inactivated upon incubation with the arginine modifier 2,3-butanedione. The inactivation of the enzyme is maximal at pH values above 8.5. The modified enzyme is reactivated when incubated in the absence of borate after removal of 2,3-butanedione. The extent of inactivation is half maximal at 10 mM 2,3-butanedione for an incubation of 30 min at 30 degrees C at pH 7.0. Under the same conditions, the time-dependence of inactivation is biphasic in a semi-logarithmic plot with half-lives of 10.9 min and 65.9 min. Incubation with 2,3-butanedione lowering markedly the maximal rate of ATPase activity does not modify the Km for MgATP. These data suggest that two classes of arginyl residues play essential role in the plasma membrane ATPase activity. Magnesium adenosine 5'-triphosphate (MgATP) and magnesium adenosine 5'-diphosphate (MgADP), the specific substrate and product, protect partially against enzyme inactivation by 2,3-butanedione. Free ATP or MgGTP which are not enzyme substrates do not protect. Free magnesium, another effector of enzyme activity, exhibits partial protection at magnesium concentrations up to 0.5 mM, while increased inactivation is observed at higher Mg2+ concentrations. These protections indicate either the existence of at least one reactive arginyl in the substrate binding site or a general change of enzyme conformation induced by MgATP, MgADP or free magnesium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号