首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Placental homogenates contain a heat-stable, dialyzable fraction which specifically inhibits two placental enzymes, both of which possess 15-hydroxyprostaglandin dehydrogenase and 9-ketoprostaglandin reductase activities. The inhibition of the two enzymes is the same. The inhibitor has been resolved into two components by gel filtration on a column of Sephadex LH-20. The component which eluted first has been identified as oxidized glutathione (GSSG), the other as a glutathione-containing material (GSX). Inhibition of the 15-hydroxyprostaglandin dehydrogenase activity is competitive with respect to the prostaglandin substrate (KiGSSG = 26 μM, KiGSX = 1.4 μM). Inhibition of the 9-ketoprostaglandin reductase activity is also competitive with respect to the prostaglandin substrate (KiGSSG = 68 μM). The most effective inhibitor of the 15-hydroxyprostaglandin dehydrogenase is the prostaglandin A1-glutathione adduct (Ki = 0.27 μM). This compound is not a substrate for oxidation of the 15-hydroxyl group but it is the best substrate found to date for reduction of the 9-keto function.  相似文献   

2.
3.
Helicobacter pylori urease is involved in several physiologic responses such as stomach and duodenal ulcers, adenocarcinomas and stomach lymphomas. Thus, inhibition of urease is taken for a good chance to treat H. pylori-caused infections, we have therefore focused our efforts on seeking novel urease inhibitors. Here, a series of arylpropionylhydroxamic acids were synthesized and evaluated for urease inhibition. Out of these compounds, 3-(2-benzyloxy-5-chlorophenyl)-3-hydroxypropionylhydroxamic acid (d24) was the most active inhibitor with IC50 of 0.15 ± 0.05 μM, showing a mixed inhibition with both competitive and uncompetitive aspects. Non-linear fitting of kinetic data gives kinetics parameters of 0.13 and 0.12 μg·mL−1 for Ki and Ki′, respectively. The plasma protein binding assays suggested that d24 exhibited moderate binding to human and rabbit plasma proteins.  相似文献   

4.
In Mediterranean folk medicine Olea europaea L. leaf (Ph.Eur.) preparations are used as a common remedy for gout. In this in vitro study kinetic measurements were performed on both an 80% ethanolic (v/v) Olea europaea leaf dry extract (OLE) as well as on nine of its typical phenolic constituents in order to investigate its possible inhibitory effects on xanthine oxidase (XO), an enzyme well known to contribute significantly to this pathological process. Dixon and Lineweaver-Burk plot analysis were used to determine Ki values and the inhibition mode for the isolated phenolics, which were analysed by RP-HPLC for standardisation of OLE. The standardised OLE as well as some of the tested phenolics significantly inhibited the activity of XO. Among these, the flavone aglycone apigenin exhibited by far the strongest effect on XO with a Ki value of 0.52 μM. In comparison, the known synthetic XO inhibitor allopurinol, used as a reference standard, showed a Ki of 7.3 μM. Although the phenolic secoiridoid oleuropein, the main ingredient of the extract (24.8%), had a considerable higher Ki value of 53.0 μM, it still displayed a significant inhibition of XO. Furthermore, caffeic acid (Ki of 11.5 μM; 1.89% of the extract), luteolin-7-O-β-d-glucoside (Ki of 15.0 μM; 0.86%) and luteolin (Ki of 2.9 μM; 0.086%) also contributed significantly to the XO inhibiting effect of OLE. For oleuropein, a competitive mode of inhibition was found, while all other active substances displayed a mixed mode of inhibition. Tyrosol, hydroxytyrosol, verbascoside, and apigenin-7-O-β-d-glucoside, which makes up for 0.3% of the extract, were inactive in all tested concentrations. Regarding the pharmacological in vitro effect of apigenin-7-O-β-d-glucoside, it has to be considered that it is transformed into the active apigenin aglycone in the mammalian body, thus also contributing substantially to the anti-gout activity of olive leaves. For the first time, this study provides a rational basis for the traditional use of olive leaves against gout in Mediterranean folk medicine.  相似文献   

5.
The fluxes of choline across the plasma membrane were measured in primary nerve cell cultures from chick embryo cerebral hemispheres containing neurons and supporting cells.The incubation of cells with exogenous concentrations of choline far below the concentrations present in the growth medium (~30–50 μM) and in the range of the high affinity uptake mechanism (about 0.5 μM) profoundly affected the steady state of the endocellular free choline levels. The kinetics of the uptake were dependent upon the endocellular status of the choline pool since after preincubation in the absence of choline two Kms are observed (Km1: 0.8 μM; Vmax1: 44.8 pmol/mg protein/2 min; Km2: 14.3 μM, Vmax2: 333.3 pmol/mg protein/2 min) while only one mechanism can be found when the endocellular pool of choline was kept in steady state conditions (Km: 14.3 μM, Vmax: 545.5 pmol/mg protein/2 min). The presence of an homoexchange phenomenon was suspected since choline efflux could be increased by increasing the concentrations of choline in the incubation medium.The results suggest that the movement of choline into nerve cells in culture appears to be mediated by a single mechanism which is regulated by the endocellular status of the choline pool.  相似文献   

6.
The activity of a partially purified bovine heart Na+,K+-ATPase is inhibited by DL- and L- palmitylcarnitine (I50=44–48μM). Palmitylcarnitine with a I50 of 25μM also markedly inhibits K+-phosphatase activity. Palmityl-CoA decreases Na+,K+-ATPase activity, but to a lesser extent (I50=80μM). Both palmitic acid and hexanoic acid produce 10 to 15% inhibition of activity at concentrations of 70μM and 3–5mM, respectively. These free fatty acids protect the enzyme against inhibition by 40μM palmitylcarnitine. However, at 50μM palmitylcarnitine, the protective effect by hexanoic acid is no longer apparent. Addition of 40μM palmitylcarnitine to the Na+,K+-ATPase in the presence of varying concentrations of palmityl-CoA produces an additive inhibition of enzyme activity, suggesting two different sites on the enzyme susceptible to inhibition by the two ester forms of the fatty acid.  相似文献   

7.
The paper considers the effects of bedaquiline (BDQ), an antituberculous preparation of the new generation, on rat liver mitochondria. It was shown that 50?μM BDQ inhibited mitochondrial respiration measured with substrates of complexes I and II (glutamate/malate and succinate/rotenone systems respectively) in the states V3 and VDNP. At the same time, at concentrations below 50?μM, BDQ slightly stimulated respiration with substrates of complex I in the state V2. BDQ was also found to suppress, in a dose-dependent manner, the activity of complex II and the total activity of complexes II?+?III of the mitochondrial transport chain. It was discovered that at concentrations up to 10?μM, BDQ inhibited H2O2 production in mitochondria. BDQ (10–50?μM) suppressed the opening of Ca2+-dependent CsA-sensitive mitochondrial permeability transition pore. The latter was revealed experimentally as the inhibition of Ca2+/Pi-dependent swelling of mitochondria, suppression of cytochrome c release, and an increase in the Ca2+ capacity of the organelles. BDQ also decreased the rate of mitochondrial energy-dependent K+ transport, which was evaluated by the energy-dependent swelling of mitochondria in a K+ buffer and DNP-induced K+ efflux from the organelles. The possible mechanisms of BDQ effect of rat liver mitochondria are discussed.  相似文献   

8.
The effect of adenine nucleotides in pyruvate, orthophosphate dikinase (EC 2.7.9.1, ATP, pyruvate, orthophosphate phosphotransferase)_was studied with the enzyme furified from maize, and with the enzyme obtained from mesophyll chloroplast extracts during assay in the direction of pyruvate conversion to phosphoenolpyruvate. (1) In studies with the purified enzyme, the relationship of initial velocity to ATP concentrations follows Michaelis-Menten kinetics, and the Km value for ATP was 22.8 μM (± 5.1 μM, n = 5). (2) AMP was a competitive inhibitor with respect to ATP, and its Ki value was 35.8 μM (± μM, n = 4). There was no inhibition of catalysis by ADP up to a concentration of 460 μM. (3) The theoretical response of the enzyme to change in the adenylate energy charge was calculated from the kinetic constants for ATP and AMP. The experimentally obtained values were similar to the theoretical response when varying energy charge was generated by addition of appropriate amounts of ATP, ADP and AMP in assays with the purified enzyme. The response of the enzyme to energy charge at different pH values (pH 7.0, 7.5, and 8.0) was similar, although the activity of the enzyme at pH 7.0 was about 40% of that at pH 8.0. (4) When mesophyll chloroplast extracts of maize, which contain high levels of adenylate kinase, were used as the source of the enzyme and the adenylate energy charge was generated by addition of different concentrations of ATP and AMP, the influence on catalysis was similar to that with the purified enzyme. (5) The data show that the effect of varying energy chage on the activity of the dikinase is not typical of a U-type enzyme, in contrast to phosphoglycerate kinase (EC 2.7.2.3, ATP: 3-phospho-D-glycerate 1-phosphotransferase), which is more strongly regulated. (6) Evidence is presented for competition between the dikinase and phosphoglycerate kinase for ATP in mesophyll chloroplast extracts of maize. (7) When the effect of adenylate energy charge on the state of activation and the direct effect on catalysis of the dikanase are combined, the total capacity for catalysis is very dependent on the energy charge.  相似文献   

9.
The effect of phosphate buffer on the activity of jack bean urease was studied in the range of pH 5.80–8.07. The inhibition constants of phosphate buffer were determined by measuring initial reaction rates at each pH for a series of buffer concentrations at a series of urea concentrations. It was shown that: (1) at pH 5.80–7.49 the buffer is a competitive inhibitor of the enzyme with Ki,buffer increasing from 0.54 mM for pH 5.80 to 362 mM for pH 7.49, (2) the values of pKi,buffer are pH-dependent exhibiting a slope of −1 at pH 5.80–6.5 and a slope of −2 at pH 6.5–7.49, (3) from pH 7.62 as the pH is further raised the competitive inhibition of urease by the buffer was not observed, (4) the true competitive inhibitor of urease is H2PO4 ion, and (5) pH 6.5 and 7.6 correspond to the ionization constants of the active site groups of urease responsible for the inhibitory strength of H2PO4 ion.  相似文献   

10.
The binding of various nucleotides to chloroplast coupling factor CF1 was studied by two dialysis techniques. It was found that the number of nucleoside diphosphate sites and their specificities for the base moiety is dependent on the magnesium concentration. In the presence of 50 μM added MgCl2, the protein has a single strong site/mol protein with Kd = 0.5 μM for ADP and high specificity (Kd > 20 μM for ?ADP, GDP, CDP). In the presence of 5 mM MgCl2, the protein has two independent tight ADP sites (Kd = 0.4 μM) of low specificity (Kd ≈ 0.8, 2, and 2 μrmM, respectively for ?ADP, GDP, and CDP). These results are compared with the specificity of the partial reactions for photophosphorylation.  相似文献   

11.
The actions of a number of sodium channel-specific neurotoxins on the uptake of Na-22 by osmotically sensitive membrane preparations from rat brain were studied using a glass-fiber filter assay. Under control conditions, there was Na-22 uptake that reached saturation within 5 min, and was insensitive to tetradotoxin (10 μM). Batrachotoxin (Kdapp = 0.2 μM), veratridine (Kdapp = 1 μM) and grayanotoxin I (Kdapp = 30 μM), which increase sodium conductance in electrogenic membranes, stimulated Na-22 uptake approximately 2-fold over control levels. This additional Na-22 uptake was markedly dependent on the ionic strength of the media, associated with subfractions of the preparation enriched in plasma membranes, and completely inhibited by tetrodotoxin (10 μM). It was highly labile, showing only a minor decrease in activity within the first 4–6 h after preparation of the membranes, but disappearing within 24 h at 4° C. It is suggested that the toxins-activated Na-22 uptake, which is tetrodotoxin-sensitive, results from the actions of these toxins on the macromolecular channel complex which controls resting and action potential sodium conductance.  相似文献   

12.
Gossypol, a polyphenolic binaphthalene-dialdehyde extracted from cotton plants which possesses male antifertility action in mammals, is a potent inhibitor of phospholipid-sensitive Ca2+-dependent protein kinase from pig testis. Gossypol inhibited Ca2+-dependent activity of the enzyme without affecting its basal activity. The IC50 value (concentration causing 50% inhibition) was 31 μM when lysine-rich histone was used as substrate. Kinetic analysis indicated that the compound inhibited the enzyme non-competitively with respect to ATP (Ki = 31 μM) or lysine-rich histone (Ki = 30μM), and competitively with respect to phosphatidylserine (Ki = 2.1 μM). With Ca2+, irrespective of the presence or absence of 1,3-diolein, the compound lowered Vmax and increased the apparent Ka for Ca2+. The compound also inhibited phosphorylation by the enzyme of high-mobility-group 1 protein (one of the endogenous substrate in the testis for the enzyme located in nucleosome), with an IC50 value of 88 μM. These results suggested that a phospholipid-sensitive Ca2+-dependent protein phosphorylation system in the testis is involved in the regulation of spermatogenesis.  相似文献   

13.
Chick brain microsomal ATPase was strongly inhibited by Cu2+. (Na+ + K+)-ATPase was more susceptible to low levels of Cu2+ than Mg2+-ATPase. The inhibition of (Na+ + K+)-ATPase could be partially protected from Cu2+ in the presence of ATP in the preincubation period. When Cu2+ (6 μM) was preincubated with the enzyme in the absence of ATP, only sulfhydryl-containing amino acids (d-penicillamine and l-cysteine) could reverse the inhibition. At lower concentrations of Cu2+ (< 1.4 μM), in the absence of ATP during preincubation, the inhibition could be completely reversed by the addition of 5 mM l-phenylalanine and l-histidine as well as d-penicillamine and l-cysteine.Kinetic analysis of action of Cu2+ (1.0 μM) on (Na+ + K+)-ATPase revealed that the inhibition was uncompetitive with respect to ATP. At a low concentration of K+ (5 mM), V with Na+ was markedly decreased in the presence of Cu2+ and Km was about twice that of the control. However, at high K+ concentration (20 mM), the Km for Na+ was not affected. At both low (25 mM) and high (100 mM) Na+, Cu2+ displayed non-competitive inhibition of the enzyme with respect to K+.On the basis of these data, we suggest that Cu2+ at higher concentrations (> 6 μM) inactivates the enzyme irreversibly, but that at lower concentrations (< 1.4 μM), Cu2+ interacts reversibly with the enzyme.  相似文献   

14.
From the second-highest dilution in a most-probable-number dilution series with lactate and sulfate as substrates and rice paddy soil as the inoculum, a strain of Desulfovibrio desulfuricans was isolated. In addition to reducing sulfate, sulfite, and thiosulfate, the strain also reduced nitrate to ammonia. The latter process was studied in detail, since the ability to reduce nitrate was strongly influenced by the presence of sulfide. Sulfide inhibited both growth on nitrate and nitrate reduction. A 70% inhibition of the nitrate reduction rate was obtained at 127 μM sulfide, and growth was inhibited by 50% at approximately 320 μM sulfide and was not detectable above 700 μM sulfide. In contrast, sulfate reduction was not affected at concentrations of up to 5 mM. After growth with sulfate, an induction period of 2 to 4 days was needed before nitrate reduction started. When nitrate and sulfate were present simultaneously, only sulfate was reduced, except when sulfate was present at very low concentrations (4 μM). At higher sulfate concentrations (500 μM), nitrate reduction was temporarily halted. The affinity for nitrate uptake was extremely high (Km = 0.05 μM) compared with that for sulfate uptake (Km = 5 μM). Thus, at low nitrate concentrations this bacterium is favored relative to denitrifiers (Km = 1.8 to 13.7 μM) or other nitrate ammonifiers (e.g., Clostridium spp. [Km = 500 μM]).  相似文献   

15.
David J. Edwards 《Life sciences》1978,23(11):1201-1207
The characteristics of phenylethanolamine as both a competitive inhibitor and as a substrate for monoamine oxidase (MAO) were studied using rat brain and liver homogenates. Although phenylethanolamine, even at high concentrations (1 mM), produced minimal inhibition of MAO when serotonin (a substrate for type A MAO) was used as the substrate, it was a potent competitive inhibitor (Ki=11 μM) of the deamination of phenylethylamine (a substrate for type B MAO). When phenylethanolamine was used as a substrate, deprenyl, a selective inhibitor of type B MAO, was found to produce a single sigmoid inhibition curve at low concentrations of the inhibitor (pI50=7.5). These results indicate that phenylethanolamine is a specific substrate for type B MAO. Identification of the products formed under the assay conditions show that phenylethanolamine is converted to both mandelic acid and phenylethylene glycol by liver homogenates but only to the latter, neutral metabolite by brain homogenates.  相似文献   

16.
The single glutathione S-transferase (EC 2.5.1.18) present in rat erythrocytes was purified to apparent homogeneity by affinity chromatography on glutathione-Sepharose and hydroxyapatite chromatography. Approx. 1.86 mg enzyme is found in 100 ml packed erythrocytes and accounts for about 0.01% of total soluble protein. The native enzyme (Mr 48 000) displays a pI of 5.9 and appears to possess a homodimeric structure with a subunit of Mr 23 500. Enzyme activities with ethacrynic acid and cumene hydroperoxide were 24 and 3%, respectively, of that with 1-chloro-2,4-dinitrobenzene. The Km values for 1-chloro-2,4-dinitrobenzene and glutathione were 1.0 and 0.142 mM, respectively. The concentrations of certain compounds required to produce 50% inhibition (I50) were as follows: 12 μM bromosulphophthalein, 34 μM S-hexylglutathione, 339 μM oxidized glutathione and 1.5 mM cholate. Bromosulphophthalein was a noncompetitive inhibitor with respect to 1-chloro-2,4-dinitrobenzene (Ki = 8 μM) and glutathione (Kis = 4 μM; Kii = 11.5 μM) while S-hexylglutathione was competitive with glutathione (Ki = 5 μM).  相似文献   

17.
Quinolinic acid phosphoribosyltransferase (EC 2.4.2.19) was purified 3600-fold from rat liver and 280-fold from rat brain. Kinetic analyses (Km = 12 μM for the substrate quinolinic acid and Km 23 μM for the cosubstrate phosphoribosylpyrophosphate), physicochemical properties of the purified enzymes, inhibition by phthalic acid (Ki = 1.4 μM) and molecular weight determination (Mr 160 000 for the holoenzyme, consisting of five identical 32 kDa subunits) indicated the structural identity of quinolinic acid phosphoribosyltransferase from the two rat tissues. This was further confirmed immunologically, using antibodies raised against purified rat liver quinolinic acid phosphoribosyltransferase. Rat quinolinic acid phosphoribosyltransferase differs in several aspects from quinolinic acid phosphoribosyltransferase isolated from other organisms. The purified enzyme will prove a useful tool in the examination of a possible role of quinolinic acid in cellular function and/or dysfunction.  相似文献   

18.
Factor H (FH) is a major regulator of complement alternative pathway activation. It is composed of 20 short complement regulator (SCR) domains and is genetically associated as a risk factor for age-related macular degeneration. Previous studies on FH suggested that it existed in monomeric and dimeric forms. Improved X-ray scattering and analytical ultracentrifugation methodology for wild-type FH permitted a clarification of these oligomeric properties. Data at lower concentrations revealed a dependence of the X-ray radius of gyration values on concentration that corresponded to the weak self-association of FH. Global sedimentation equilibrium fits indicated that a monomer-dimer equilibrium best described the data up to 1.3 mg/ml with a fitted dissociation constant KD of 28 μM and that higher oligomers formed at increased concentrations. The KD showed that about 85-95% of serum FH will be monomeric in the absence of other factors. Size-distribution analyses in sedimentation velocity experiments showed that monomeric FH was the major species but that as many as six oligomeric forms co-existed with it. The data were explained in terms of two weak dimerisation sites recently identified in the SCR-6/8 and SCR-16/20 fragments of FH with similar KD values. These observations indicate a mechanism for the progressive self-association of FH and may be relevant for complement regulation and the formation of drusen deposits that are associated with age-related macular degeneration.  相似文献   

19.
Chorismate mutase CM-1, an isozyme that is inhibited by phenylalanine and tyrosine and activated by tryptophan was purified 1200-fold from etiolated mung bean seedlings with a final yield of 18–20%. Loss of activity was rapid in highly purified preparations but was reduced by the addition of bovine serum albumin. Enzyme activity was unaffected by thiol-alkylating agents, reducing agents, EDTA, or divalent cations.The enzyme displayed pH-sensitive, positive homotrophic cooperativity toward chorismate with greatest cooperativity at the pH optimum of the tryptophan-free enzyme (pH 7.2–7.4) and least cooperativity at the pH optimum of the enzyme fully activated with tryptophan (pH 7.0). Activation by tryptophan reduced the Km for the enzyme, and modified the sigmoid substrate saturation kinetics to a rectangular hyperbola. Feedback inhibition by the end product amino acids phenylalanine and tyrosine was not additive but revealed heterotrophic cooperativity with chorismate. Tyrosine (Ki = 31 μM) was a slightly more effective inhibitor than phenylalanine (Ki = 37 μM) at 1 mm chorismate. Tryptophan at equimolar concentration antagonized the feedback inhibition by phenylalanine and tyrosine. The latter two, however, at higher concentrations reversed the tryptophan activation in a noncompetitive fashion with respect to either tryptophan or chorismate. The enzyme was responsive only to the l-isomers of the amino acids. The results indicate a primary role for chorismate mutase CM-1 from mung bean in the regulation of the synthesis of phenylalanine and tyrosine for protein synthesis.  相似文献   

20.
5'-Deoxy-5'-S-isobutylthioadenosine (SIBA), a synthetic analogue of S-adenosylhomocysteine, has been reported by others to inhibit a number of biological processes and these effects of SIBA have been attributed generally to inhibition of methyltransferases. However, the present studies with mouse lymphocytes show that SIBA also acts as a competitive inhibitor (Ki = 130 μM) of the high-affinity cyclic AMP phosphodiesterase and potentiates the cyclic AMP response of intact cells to several activators of adenylate cyclase. Moreover, SIBA has been found to inhibit lymphocyte-mediated cytolysis, a cellular function known to be sensitive to elevated lymphocyte levels of cyclic AMP, at concentrations (IC50 = 250 μM) similar to those which inhibit cyclic AMP phosphodiesterase. These results indicate the need for caution in attributing biological effects of SIBA singularly to inhibition of methyltransferases and suggest the possible agency of cyclic AMP in the mechanism of SIBA action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号