首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exchange properties of the activator CO2 of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase were characterized both in vitro with the purified enzyme, and in situ within isolated chloroplasts. Carboxyarabinitol-1,5-bisphosphate, a proposed reaction intermediate analog for the carboxylase activity of the enzyme, was used to trap the activator CO2 on the enzyme both in vitro and in situ. Modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity in intact chloroplasts during a light/dark cycle was associated with a similar modulation in carboxyarabinitol-1,5-bisphosphate-trapped CO2. The exchange kinetics of the activator CO2 were monitored by activation of the enzyme to steady state in the presence of 12CO2, followed by addition of 14CO2 and determination of the amount of labeled CO2 trapped on the enzyme by carboxyarabinitol-1,5-bisphosphate. Rate constants (Kobs) for exchange with both the purified enzyme (0.45 min−1) and in illuminated chloroplasts (0.18 min−1) were comparable to the observed rate constants for enzyme activation under the two conditions. A similar exchange of the activator CO2 was not observed in chloroplasts in the dark. Kinetic analysis of the exchange properties of the purified enzyme were consistent with an equilibrium between active and inactive forms of the enzyme during steady state activation.  相似文献   

2.
A procedure is described for the purification of glutamine synthetase from the nitrogen-fixing organism Azotobacter vinelandii. Electron micrographs of the enzyme reveal a dodecameric arrangement of its subunits in two superimposed hexagonal rings similar to the glutamine synthetase of Escherichia coli. Disc eleetrophoresis in the presence of sodium dodecyl sulfate and sedimentation studies show a subunit molecular weight of 56,500 and a sedimentation coefficient (s20,w) of the native enzyme of 20.0 S. Like the E. coli enzyme, the glutamine synthetase of A. vinelandii is regulated by adenylylation/deadenylylation. This finding was derived from (a) studies on the effect of snake venom phosphodiesterase treatment on the catalytic and spectral properties of enzyme isolated from cells grown on a nitrogen-rich medium, (b) the identification of the AMP released by the phosphodiesterase by thin-layer chromatography, (c) the selective precipitation of adenylylated enzyme with antibodies directed against adenylylated bovine serum albumin, and (d) the in vitro incorporation of radioactivity from [14C]ATP into deadenylylated enzyme in the presence of either crude extract from A. vinelandii or partially purified adenylyl transferase from E. coli. The state of adenylylation appears to have a similar influence on the catalytic properties of A. vinelandii glutamine synthetase as on those of the E. coli enzyme, with the exception that the deadenylylated form of the A. vinelandii glutamine synthetase is almost inactive in the Mn-dependent transferase reaction.  相似文献   

3.
Farnesyl pyrophosphate-[14C] and geranylgeranyl pyrophosphate-[14C] were biosynthesized from mevalonic acid-[2-14C] by cell-free enzyme extracts of pea (Pisum sativum) cotyledons containing MgCl2, MnCl2, ATP and AMO-1618. Maximum yields of farnesyl pyrophosphate were obtained after 30 min incubation while geranylgeranyl pyrophosphate was the primary product after 180 min. Biosynthesized geranylgeranyl pyrophosphate-[14C] served as an efficient substrate for ent-kaurene biosynthesis in reaction mixtures containing cotyledon enzymes when AMO-1618 was omitted. Enzyme extracts from green pea shoot tips and chloroplasts also converted geranylgeranyl pyrophosphate to ent-kaurene in very low yields. Ent-kaurene production from mevalonic acid-[2-14C] in extracts of pea shoot tips was also enhanced by addition of chloroplast enzymes. This evidence indicates that kaurene synthetase is present in pea chloroplasts and adds to the possibility that some gibberellin biosynthesis may be compartmentalized in those organelles.  相似文献   

4.
λ-Glutamylcysteine synthetase activity (EC 6.3.2.2) was analysed in Sephacryl S-200 eluents of extracts from cell suspension cultures ofNicotiana tabacum L. cv. Samsun by determination of λ-glutamylcysteine as its monobromobimane derivative. The enzyme has a relative molecular mass (Mr) of 60000 and exhibits maximal activity at pH 8 (50% at pH 7.0 and pH9.0) and an absolute requirement for Mg2+. With 0.2mM Cd2+ or Zn2+, enzyme activity was reduced by 35% and 19%, respectively. Treatment with 5 mM dithioerythritol led to a heavy loss of activity and to dissociation into subunits (Mr 34000). Buthionine sulfoximine andl-methionine-sulfoximine, known as potent inhibitors of λ-glutamylcysteine synthetase from mammalian cells, were found to be effective inhibitors of the plant enzyme too. The apparent Km values forl-glutamate,l-cysteine, and α-aminobutyrate were, respectively, 10.4mM, 0.19 mM, and 6.36 mM. The enzyme was completely inhibited by glutathione (Ki=0.42 mM). The data indicate that the rate of glutathione synthesis in vivo may be influenced substantially by the concentration of cysteine and glutamate and may be further regulated by feedback inhibition of λ-glutamylcysteine synthetase by glutathione itself. λ-Glutamylcysteine synthetase is, like glutathione synthetase, localized in chloroplasts as well as in the cytoplasm. Chloroplasts fromPisum sativum L. isolated on a Percoll gradient contained about 72% of the λ-glutamylcysteine synthetase activity in leaf cells and 48% of the total glutathione synthetase activity. In chloroplasts ofSpinacia oleracea L. about 61% of the total λ-glutamylcysteine synthetase activity of the cells were found and 58% of the total glutathione synthetase activity. These results indicate that glutathione synthesis can take place in at least two compartments of the plant cell. Dedicated to Professor A. Prison on the occasion of his 80th birthday  相似文献   

5.
Both uncomplexed subunits of the anthranilate synthetase-phosphoribosyltransferase enzyme complex from Salmonella typhimurium have an absolute requirement for divalent metal ions which can be satisfied by Mg2+, Mn2+, or Co2+. The metal ion kinetics for uncomplexed anthranilate synthetase give biphasic double-reciprocal plots and higher apparent Km values than those for anthranilate synthetase in the enzyme complex. In contrast, the apparent Km values for phosphoribosyltransferase are the same whether the enzyme is uncomplexed or complexed with anthranilate synthetase. This suggests that the metal ion sites on anthranilate synthetase, but not those on phosphoribosyltransferase, are altered upon formation of the enzyme complex. These results and the results of studies reported by others, suggest that complex formation between anthranilate synthetase and phosphoribosyltransferase leads to marked alterations at the active site of the former, but not the latter enzyme. Uncomplexed anthranilate synthetase can be stoichiometrically labeled with Co(III) under conditions which lead to inactivation of 75% of its activity. A comparison of the effects of anthranilate and tryptophan on phosphoribosyltransferase activity in the uncomplexed and complexed forms shows that anthranilate, but not tryptophan, inhibits the uncomplexed enzyme. The complexed phosphoribosyltransferase shows substrate inhibition by anthranilate binding to the phosphoribosyltransferase subunits. In contrast, in a tryptophan-hypersensitive variant complex, anthranilate inhibits phosphoribosyltransferase activity by acting on the anthranilate synthetase subunits. The data are interpreted to mean that there are two classes of binding sites for anthranilate, one on each type of subunit, which may participate in the regulation of anthranilate synthetase and phosphoribosyltransferase under different conditions.  相似文献   

6.
Zinc-induced paracrystalline aggregation of glutamine synthetase   总被引:22,自引:0,他引:22  
The unique capacity of glutamine synthetase to form highly insoluble paracrystalline aggregates in the presence of Zn2+ and Mg2+ mixtures is the basis of a new simple procedure for the isolation of the enzyme from crude extracts of Escherichia coli. Under optimal conditions (pH 5.85, 25 °C, 1.5 mm ZnSO4 and 50 MgCl2 over 95% of the enzyme is precipitated from crude extracts; differential extraction of the precipitate with dilute buffer (pH 7.0) containing 2.5 mm MgCl2 leads to high yields of almost pure glutamine synthetase. Polyacrylamide gel electrophoresis of the purified enzyme shows it to consist of one major protein and two minor protein components, all of which exhibit glutamine synthetase activity. The major component appears to be identical with the enzyme previously isolated by the older more tedious procedure of Woolfolk et al. (1966). The γ-glutamyl transferase activity of enzyme isolated by the new procedure is the same as that isolated by the older method, but its biosynthetic activity is 25–35% lower. In all other respects examined (i.e., divalent ion specificity, pH optimum, apparent Km values for substrates, susceptibility to feedback inhibition and physical properties) enzymes prepared by the old and the new procedures are indistinguishable. From studies with pure glutamine synthetase isolated by either procedure, it has been established that paracrystalline aggregation does not occur until 9–10 equivs of Zn2+ are bound per mole of enzyme. The high specificity of Zn2+ in inducing enzyme aggregation, suggests that its binding provokes a unique conformational state of the enzyme. This is supported by the fact that addition of Zn2+ to relaxed (divalent cation free) enzyme elicits a change in the ultraviolet spectrum of the enzyme that is qualitatively different from that caused by either Mg2+ or Mn2+. Moreover, in contrast to Mg2+, the binding of Zn2+ decreases the fluorescence associated with the binding of 2-p-toludinyl-naphthalene-6-sulfonic acid to the enzyme, suggesting that Zn2+ binding is accompanied by a decrease in the number of exposed hydrophobic regions on the enzyme.  相似文献   

7.
The tyrosyl-tRNA synthetases located in cytoplasm and chloroplasts of soybean cotyledons were purified to near homogeneity by ammonium sulfate precipitation, DEAE-cellulose chromatography, hydroxylapatite chromatography, and DEAE-Sephadex A-25 chromatography. Purified cytoplasmic tyrosyl-tRNA synthetase shows only a single band in acrylamide gel electrophoresis which corresponds to a MW of 126000. In SDS-acrylamide gel electrophoresis the enzyme again shows only a single band which corresponds to a MW of 61 000. Chloroplast tyrosyl-tRNA synthetase shows only one band in both acrylamide and SDS-acrylamide gel electrophoresis with MWs being 98 000 and 43 000, respectively. For cytoplasmic tyrosyl-tRNA synthetase the apparent Kms determined are 6.8 μM L-tyrosine, 49 μM ATP, and 8.9 × 10?8 M tRNA (as total tRNA). Apparent Kms for chloroplast tyrosyl-tRNA synthetase are 4.9 μM L-tyrosine, 214 μM ATP and 2.2 × 10?8 M tRNA (as BDC-ethanol fraction tRNA). Fractionation of soybean cotyledon-tRNA on RPC-5 columns gives 4 tyrosyl-tRNA species, the first two species (tRNA1 and 2Tyr) are acylated only by cytoplasmic tyrosyl-tRNA synthetase while the last two species (tRNA3 and 4Tyr) are acylated only by chloroplast tyrosyl-tRNA synthetase.  相似文献   

8.
Dimethylallylpyrophosphate:l-tryptophan dimethylallyltransferase (DMAT synthetase), the first pathway-specific enzyme of ergot alkaloid biosynthesis, has been isolated from mycelia of Claviceps sp., strain SD 58, and purified to apparent homogeneity. The enzyme reaction products were identified as l-4-(γ,γ-dimethylallyl)tryptophan and inorganic pyrophosphate. DMAT synthetase is a single subunit protein of molecular weight 70,000–73,000 and has an isoelectric point at pH 5.8. The enzyme is activated by Fe2+, Mg2+, and particularly Ca2+; Km values for l-tryptophan and dimethylallylpyrophosphate were determined to be 0.067 and 0.2 mm, respectively. Kinetic analysis indicated that the DMAT synthetase reaction proceeds by a sequential rather than a ping-pong mechanism.  相似文献   

9.
Glutamine synthetase was localized in leaves and cotyledons of young tomato (Lycopersicon esculentum Mill.) plants using immunogold techniques coupled to transmission electron microscopy. The enzyme occurs only in chloroplasts and is most probably a stroma constituent.  相似文献   

10.
The pyrimidine-synthesizing enzyme, carbamyl phosphate synthetase II (CP synthetase II) was examined in the rat during normal fetal development and in the fed and calorically deprived neonate. CP synthetase II in the placenta, liver, gut, carcass, and brain showed the following common properties; ability to utilize ammonia as well as l-glutamine as a substrate; negligible enhancement of activity by N-acetyl l-glutamate; inhibition of activity by the glutamine analog, 6-diazo-5-oxo-l-norleucine; and by the phosphorylated pyrimidine uridine 5′-triphosphate. Apparent Km values for l-glutamine of CP synthetase II in placenta and extrahepatic fetal structures were found to vary from 1.1 to 2.3 × 10?5M. In the brain and placenta, tissue concentrations of l-glutamine obtained at serial time points during gestation were at least 200-fold higher. Relative activities for the enzymes catalyzing the subsequent two steps in pyrimidine biosynthesis, aspartate transcarbamylase and dihydroorotase, were substantially greater than CP synthetase II at all times measured and therefore were consistent with the possibility that CP synthetase II may be one of the rate-limiting steps in the de novo biosynthesis of pyrimidines in the placenta and extrahepatic fetal tissues. Serial observations were obtained in placenta, brain, and neonatal muscle to see whether correlations could be demonstrated between concentrations of CP synthetase II per milligram of tissue DNA and daily increments in total tissue DNA. In all these structures, higher concentrations of enzyme were observed during periods of more rapid DNA accumulation. Certain exceptions were also demonstrable. Thus, manifest CP synthetase II activity persisted in the placenta beyond day 16 of gestation (when placental DNA no longer increases); and neonatal muscle exhibited CP synthetase II activity when all net increments in DNA were abolished by caloric deprivation. The latter observations have suggested that the enzyme may be operative (and of possible regulatory significance) even in the absence of cellular proliferation.  相似文献   

11.
Some properties of a preparation of an enzyme, lunularic acid decarboxylase, from the liverwort Conocephalum conicum are described. The enzyme is normally bound and could be solubilized with Triton X-100; at least some of the bound decarboxylase activity appears to be associated with chloroplasts. For lunularic acid the enzyme has Km 8.7 × 10?5 M (pH 7.8 and 30°). Some substrate analogues have been tested but no other substrate was found. Pinosylvic acid is a competitive inhibitor for the enzyme, Ki 1.2 × 10?4 M (pH 7.8 and 30°). No product inhibition was observed. Lunularic acid decarboxylase activity has also been observed with a cell-free system from Lunularia cruciata.  相似文献   

12.
By polyacrylamide gel electrophoresis, DEAE Sephacel, and hydroxyapatite chromatography, one form of glutamine synthetase has been identified in spinach (Spinacia oleracea L. cv. Monstrueux de Viroflay) leaves. It is localized only inside the chloroplast. The enzyme was purified to homogeneity and specific antibodies against the protein were raised by immunization of rabbits. The intracellular localization of glutamine synthetase in spinach leaves was studied by indirect immunofluorescence microscopy on thin-sectioned spinach leaves. It has been demonstrated that the enzyme is specifically associated with the chloroplasts of parenchymatous cells.  相似文献   

13.
Anthony Haystead 《Planta》1973,111(3):271-274
Summary A glutamine synthetase has been localised in the chloroplasts of Vicia faba. The enzyme has requirements for Mg2+ and ATP in the biosynthetic reaction and in addition will catalyse a -glutamyl transferase reaction in the presence of Mn2+ and arsenate. The enzyme is inhibited by AMP, CTP, glycine and alanine. These results are discussed in relation to the possible chloroplastic synthesis of nucleotide bases. Estimations of glutamine amide-2-oxoglutarate amino transferase (oxido-reductase) have demonstrated only low levels of activity in the chloroplast extracts. This enzyme is generally active in organisms where GS has an assimilary role. It is coneluded that glutamine synthetase has a biosynthetic and not an assimilatory role in the chloroplast.  相似文献   

14.
An artificial Na+ gradient across the envelope (Na+ jump) enhanced pyruvate uptake in the dark into mesophyll chloroplasts of a C4 plant, Panicum miliaceum (NAD-malic enzyme type) (J Ohnishi, R Kanai [1987] FEBS Lett 219:347). In the present study, 22Na+ and pyruvate uptake were examined in mesophyll chloroplasts of several species of C4 plants. Enhancement of pyruvate uptake by a Na+ jump in the dark was also seen in mesophyll chloroplasts of Urochloa panicoides and Panicum maximum (phosphoenolpyruvate carboxykinase types) but not in Zea mays or Sorghum bicolor (NADP-malic enzyme types). In mesophyll chloroplasts of P. miliaceum and P. maximum, pyruvate in turn enhanced Na+ uptake in the dark when added together with Na+. When flux of endogenous Na+ was measured in these mesophyll chloroplasts preincubated with 22Na+, pyruvate addition induced Na+ influx, and the extent of the pyruvate-induced Na+ influx positively correlated with that of pyruvate uptake. A Na+/H+ exchange ionophore, monensin, nullified all the above mutual effects of Na+ and pyruvate in mesophyll chloroplasts of P. miliaceum, while it accelerated Na+ uptake and increased equilibrium level of chloroplast 22Na+. Measurements of initial uptake rates of pyruvate and Na+ gave a stoichiometry close to 1:1. These results point to Na+/pyruvate cotransport into mesophyll chloroplasts of some C4 plants.  相似文献   

15.
The increasing risk of drug-resistant bacterial infections indicates that there is a growing need for new and effective antimicrobial agents. One promising, but unexplored area in antimicrobial drug design is de novo purine biosynthesis. Recent research has shown that de novo purine biosynthesis in microbes is different from that in humans. The differences in the pathways are centered around the synthesis of 4-carboxyaminoimidazole ribonucleotide (CAIR) which requires the enzyme N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) synthetase. Humans do not require and have no homologs of this enzyme. Unfortunately, no studies aimed at identifying small-molecule inhibitors of N5-CAIR synthetase have been published. To remedy this problem, we have conducted high-throughput screening (HTS) against Escherichia coli N5-CAIR synthetase using a highly reproducible phosphate assay. HTS of 48,000 compounds identified 14 compounds that inhibited the enzyme. The hits identified could be classified into three classes based on chemical structure. Class I contains compounds with an indenedione core. Class II contains an indolinedione group, and Class III contains compounds that are structurally unrelated to other inhibitors in the group. We determined the Michaelis–Menten kinetics for five compounds representing each of the classes. Examination of compounds belonging to Class I indicates that these compounds do not follow normal Michaelis–Menten kinetics. Instead, these compounds inhibit N5-CAIR synthetase by reacting with the substrate AIR. Kinetic analysis indicates that the Class II family of compounds are non-competitive with both AIR and ATP. One compound in Class III is competitive with AIR but uncompetitive with ATP, whereas the other is non-competitive with both substrates. Finally, these compounds display no inhibition of human AIR carboxylase:SAICAR synthetase indicating that these agents are selective inhibitors of N5-CAIR synthetase.  相似文献   

16.
《Insect Biochemistry》1979,9(3):279-286
The predominant carbamyl phosphate synthetase activity in adult Drosophila melanogaster is a glutamine-utilizing, N-acetylglutamate-independent enzyme similar to that found in other eukaryotes. The synthetase poorly utilizes high levels of NH4+ in place of glutamine. Its activity is severely reduced in particular r mutants in agreement with earlier findings. The utilization of glutamine, Mg2+, and ATP by the enzyme are described. A pH optimum of 7.4–7.6 was determined. The enzyme's activity is inhibited by UTP, UDP, CTP, CDP, adenosine, AMP and free ATP and its activity is stimulated by 5-phosphoribosyl-1-pyrophosphate. These properties are discussed and compared to those of the enzyme from other organisms.  相似文献   

17.
Kobayashi M., Yokogawa M., Mori M. and Tatibana M. 1978. Pyrimidine nucleotide biosynthesis in Clonorchis sinensis and Paragonimus ohirai. International Journal for Parasitology8: 471–477. A carbamoyl phosphate synthetase was detected in the cytosol fractions of the adult worms of Clonorchis sinensis and Paragonimus ohirai. The enzyme was partially purified and was shown to utilize both l-glutamine and ammonia and does not require N-acetyl-l-glutamate. The enzyme was subject to specific feedback inhibition by end products such as UDP, UTP, CDP, dUDP and dCDP and was stimulated by 5-phosphoribosyl-1-pyrophosphate. These properties of the synthetase were similar to those of carbamoyl phosphate synthetase II demonstrated in mammalian tissues Some other enzyme activities of this pathway were also detected in both species. Paragonimus ohirai actively incorporated 14CO2 into uridine nucleotides; accumulation of intermediates of the pathway was not seen. These results indicate that the carbamoyl phosphate synthetase plays a key and regulatory step of de novo pyrimidine nucleotide biosynthesis in these worms.  相似文献   

18.
In cell-free preparations of NH4+-grown cultures of the cyanobacterium Anabaena L-31 the glutamine synthetase activity is only half as much as in N2-grown cultures. Using a procedure which enables quantitative purification of the enzyme to homogeneity it has been shown that the decrease in the enzyme activity is caused by NH4+-mediated repression. Glutamine synthetase activity in both N2-grown and NH4+-grown Anabaena remains stable for more than 24 h in the presence of chloramphenicol suggesting low enzyme turnover and an enzyme half-life greater than the generation time (16–18 h) of the cyanobacterium. In N2-grown cultures, a drastic decrease in the enzyme activity by exogenous NH4+ can be discerned when fresh protein synthesis is prevented by chloramphenicol. The enzyme purified from such cultures has Km values for NH4+, glutamate Mg2+, and ATP similar to those observed for the enzyme from N2- and NH4+-grown Anabaena, but shows depression in V for all the substrates, leading to drastic decrease in specific activity. The modified enzyme also shows a sharper thermal denaturation profile. These results indicate that NH4+-mediated modification to a less active form may be a means of regulation of glutamine synthetase in N2-fixing cultures of Anabaena.  相似文献   

19.
Chloroplasts isolated from immature leaves of spinach (Spinacia oleracea) differ in enzyme levels from those isolated from mature leaves. On a chlorophyll basis, immature chloroplast preparations had 5- to 6-fold higher capacity to synthesize fatty acids from 2-14C-acetate compared to plastids isolated from mature leaves. This difference was correlated with higher activities for the enzymes, acetyl coenzyme A synthetase, malonyl coenzyme A synthetase, acetyl coenzyme A carboxylase, and oleyl coenzyme A transferase in plastid pressates obtained from immature leaves. Disrupted chloroplast preparations from both mature and immature leaves retained the ability to incorporate 2-14C-acetate into fatty acids in a pattern similar to that by isolated chloroplasts. 2-14C-Acetate, 2-14C-acetyl coenzyme A, 2-14C-malonate, and 1,3-14C malonyl coenzyme A were readily incorporated into a number of fatty acids. Moreover, the synthesis of oleate by chloroplast pressates from these substrates was strongly inhibited by KCN, flavin adenine mononucleotides and dinucleotides, and anaerobic conditions, while linolenic acid synthesis was unaffected by these compounds.  相似文献   

20.
The specific activities of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase were determined in intact protoplasts and intact chloroplasts from Chlamydomonas reinhardtii. After correction for contamination, the data were used to calculate the portion of each enzyme in the algal chloroplast. The chloroplast of C. reinhardtii contained all enzyme activities for nitrogen assimilation, except nitrate reductase, which could not be detected in this organelle. Glutamate synthase (NADH- and ferredoxin-dependent) and glutamate dehydrogenase were located exclusively in the chloroplast, while for nitrite reductase and glutamine synthetase an extraplastidic activity of about 20 and 60%, respectively, was measured. Cells grown on ammonium, instead of nitrate as nitrogen source, had a higher total cellular activity of the NADH-dependent glutamate synthase (+95%) and glutamate dehydrogenase (+33%) but less activity of glutamine synthetase (−10%). No activity of nitrate reductase could be detected in ammonium-grown cells. The distribution of nitrogen-assimilating enzymes among the chloroplast and the rest of the cell did not differ significantly between nitrate-grown and ammonium-grown cells. Only the plastidic portion of the glutamine synthetase increased to about 80% in cells grown on ammonium (compared to about 40% in cells grown on nitrate).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号