首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Plant science》1987,51(1):105-112
Electrofusion was carried out using biochemically well characterized NRNicotiana plumbaginifolia mutants (Cnx 20, Nia 26, NA 36). In analytical experiments, optimal conditions for mesophyll-mesophyll and callus-callus protoplast fusions were assessed. Subsequently, in large scale experiments NR+ somatic hybrids were obtained after mesophyll protoplast fusions between Cnx 20 + Nia 26 as well as after callus protoplast fusions between Cnx 20 + Nia 26 and between Cnx 20 + NA 36. In addition, complementation of the nia mutants Nia 26 and NA 36, each characterized by a distinct biochemical phenotype, was studied using electrofusion. In these experiments no completing NR+ somatic hybrid callus was obtained. As fusion conditions were optimal and fusion products were observed to be formed it was concluded that the nia mutations, although leading to distinct biochemical phenotypes, are allelic. We also studied complementation in short term experiments. NR activity in vivo was assayed 3–4 weeks after fusion. Plants could be regenerated from the majority of the NR+ somatic hybrid calli, resulting from the fusions between Cnx 20 + Nia 26 and Cnx 20 + NA 36. Chromosome numbers of shoot tip cells of glass house grown plants varied between 32–58, the majority having the normal tetraploid number (2n = 40). Most of the plants appeared to be sterile.  相似文献   

2.
Summary A biochemical analysis of mutants altered for nitrate assimilation in Neurospora crassa is described. Mutant alleles at each of the nine nit (nitrate-nonutilizing) loci were assayed for nitrate reductase activity, for three partial activities of nitrate reductase, and for nitrite reductase activity. In each case, the enzyme deficiency was consistent with data obtained from growth tests and complementation tests in previous studies. The mutant strains at these nit loci were also examined for altered regulation of enzyme synthesis. Such exeriments revealed that mutations which affect the structural integrity of the native nitrate reductase molecule can result in constitutive synthesis of this enzyme protein and of nitrite reductase. These results provide very strong evidence that, as in Aspergillus nidulans, nitrate reductase autogenously regulates the pathway of nitrate assimilation. However, only mutants at the nit-2 locus affect the regulation of this pathway by nitrogen metabolite repression.  相似文献   

3.
Reconstitution of the apoprotein of the molybdoenzyme nitrate reductase in extracts of the Neurospora crassa mutant nit-1 with molybdenum cofactor released by denaturation of purified molybdoenzymes is efficient in the absence of exogenous MoO42? under defined conditions. Evidence is presented that this molybdate-independent reconstitution is due to transfer of intact Mo cofactor, a complex of Mo and molybdopterin (MPT), the organic constituent of the cofactor. This complex can be separated from denatured protein by gel filtration, and from excess MoO42? by reverse-phase HPLC. Sulfite oxidase, native xanthine dehydrogenase, and cyanolyzed xanthine dehydrogenase are equipotent Mo cofactor donors. Other well-studied inactive forms of xanthine dehydrogenase are also shown to be good cofactor sources. Using xanthine dehydrogenase specifically radiolabeled in the cyanolyzable sulfur, it is shown that this terminal ligand of Mo is rapidly removed from Mo cofactor under the conditions used for reconstitution.  相似文献   

4.
After x-ray irradiation, 13 mutants of Chlorella sorokiniana incapable of using NO3 as N source were isolated using a pinpoint method. Using immunoprecipitation and Western blot assays, no nitrate reductase was found in five strains while in eight mutants the enzyme was detected. The latter strains contained different patterns of nitrate reductase partial reactions. All isolates were of the nia-type as indicated by the inducibility of purine hydroxylase I and by complementation of nitrate reductase activity in the Neurospora crassa mutant Nit-1. A restoration of NADP-nitrate reductase in Nit-1 was also obtained with NH4+-grown cells indicating that Mo-cofactor is constitutive in Chlorella. Complementation experiments among the Chlorella mutants resulted in restoration of NADH-nitrate reductase activity. The characteristics of some of the Chlorella mutants are discussed in view of an improper orientation of Mo-cofactor in the residual nitrate reductase protein.  相似文献   

5.
Summary One allele at each of the five nit loci in Neurospora crassa together with the wild type strain have been compared on various nitrogen sources with regard to (i) their growth characteristics (ii) the level of nitrate reductase and its associated activities (reduced benzyl viologen nitrate reductase and cytochrome c reductase) (iii) the level of nitrite reductase and (iv) their ability to take up nitrite from the surrounding medium. Results are consistent with the hypothesis that nit-3 is the structural gene for nitrate reductase, nit-1 specifies in part a molybdenum containing moiety which is responsible for the nit-3 gene product dimerising to form nitrate reductase, nit-4 and nit-5 are regulator genes whose products are involved in the induction of both nitrate reductase and nitrite reductase and nit-2 codes for a generalised ammonium activated repressor protein. Studies on the induction of nitrate reductase (and its associated activities) and nitrite reductase in wild type, nit-1 and nit-3 in the presence of either nitrate or nitrite suggest that each enzyme may be regulated independently of the other and that nitrite could be true co-inducer of the assimilatory pathway. Nitrite uptake experiments with nit-2, nit-4 and nit-5 strains show that whereas nit-4 and nit-5 are freely permeable to this molecule, it is unable to enter the nit-2 mycelium.  相似文献   

6.
In vitro assembly of Neurospora crassa NADPH-nitrate reductase (EC1.6.6.2) could be effected by combing the nitrate induced Neurospora crassa mutant nit-1 with the extract of any known molybdenum-containing enzyme. The process involves the participation of a molybdenum-cofactor contributed by the molybdenum-enzyme fraction. This paper emphasizes two points: Firstly, the indispensable role played by EDTA in the viability of Mo-cofactor and secondly, the nature of Mo-cofactor predicated by our previous work is supported by concrete experimental results. Recent experiments with Chelax-100 column provide evidence that the in vitro formation of Neurospora NADPH-nitrate reductase involves EDTA and the latter may take part in the formation of a molybdenum, labile sulfide and EDTA complex. In addition to 10(-2) M sodium molybdate, both EDTA and reducing agent are required to activate the cofactor in the Chelax-100 column eluate. The cofactor is of low molecular weight and devoid of protein as was predicated. To substantiate those predications, concrete experimental results are provided.  相似文献   

7.
Extracts of Aspergillus nidulans wild type (bi-1) and the nitrate reductase mutant niaD-17 were active in the in vitro restoration of NADPH-dependent nitrate reductase when mixed with extracts of Neurospora crassa, nit-1. Among the A. nidulans cnx nitrate reductase mutants tested, only the molybdenum repair mutant, cnxE-14 grown in the presence of 10−3 M Na2MoO4 was active in the restoration assay.Aspergillus extracts contained an inhibitor(s) which was measured by the decrease in NADPH-dependent nitrate reductase formed when extracts of Rhodospirillum rubrum and N. crassa, nit-1 were incubated at room temperature. The inhibition by extracts of A. nidulans, bi-1, cnxG-4 and cnxH-3 was a linear function of time and a logarithmic function of the protein concentration in the extract.The molybdenum content of N. crassa wild type and nit-1 mycelia were found to be similar, containing approx. 10 μg molybdenum/mg dry mycelium. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The enzyme purified from wild-type N. crassa contained more than 1 mol of molybdenum per mol of enzyme, whereas the enzyme purified from nit-1 contained negligible amounts of molybdenum.  相似文献   

8.
Summary Two hundred and eleven nitrate reductase-deficient mutants (NR) were isolated from mutagenized Nicotiana plumbaginifolia protoplast cultures by chlorate selection and regenerated into plant. More than 40% of these clones were classified as cnx and presumed to be affected in the biosynthesis of the molybdenum cofactor, the remaining clones being classified as nia mutants. A genetic analysis of the regenerated plants confirmed this proportion of nia and cnx clones. All mutants regenerated were found to carry monogenic recessive mutations that impaired growth on nitrate as sole nitrogen source. Mutants propagated by grafting on N. tabacum systematically displayed a chlorotic leaf phenotype. This chlorosis was therefore related to the NR deficiency. The observation of leaves with NR chlorotic sectors surrounded by NR+ wild-type tissues suggeests that an NR deficiency is not corrected by diffusible factors. Periclinal chimeras between wild-type tobacco and the NR graft were also observed. In this type of chimeric tissue chlorosis was no longer detectable when NR+ cells were in the secondmost (L2) layer, but was still detectable when NR cells were in the secondmost layer. The genetic analysis of nia mutants revealed that they belong to a single complementation group. However three nia mutants were found to complement some of the other nia mutants. The apoenzyme of nitrate reductase was immunologically detected in several nia mutants but not in other members of this complementation group. Some of the nia mutants, although they were NR, still displayed methylviologenitrate reductase activity at a high level. These data show that the nia complementation group corresponds to the structural gene of nitrate reductase. Some of the mutations affecting this structural gene result in the overproduction of an inactive nitrate reductase, suggesting a feedback regulation of the level of the apoenzyme in the wild type.  相似文献   

9.
10.
《Experimental mycology》1991,15(3):273-278
Levels ofl-amino acid oxidase in wild-typeNeurospora crassa increased with the oxygen tension under derepressed or repressed conditions. Some mutants affected in the regulation of nitrogen metabolism (nmr, gln-1b,nit-4) still displayed the above oxygen effect, whereas others (nit-2,en(am)1) did not.  相似文献   

11.
NADPH-cytochrome P-450 oxidoreductase (EC 1.6.2.4) was purified from the microsomal fraction of tobacco (Nicotiana tabacum) BY2 cells by chromatography on two anion-exchange columns and 2′,5′ ADP-Sepharose 4B column. The purified enzyme showed a single protein band with a molecular weight of 79 kDa on SDS-PAGE and exhibited a typical flavoprotein redox spectrum, indicating the presence of an equimolar quantity of FAD and FMN. This enzyme followed Michaelis-Menten Kinetics with Km values of 24 μM for NADPH and 16 μM for cytochrome c. An in vitro reconstituted system of the purified reductase with a partially purified tobacco cytochrome P-450 preparation showed the cinnamic acid 4-hydroxylase activity at the rate of 14 pmol min −1nmol−1 P-450 protein and with a purified rabbit P-4502C14 catalyzed N-demethylation of aminopyrine at the rate of 6 pmol min−1 lnmo−1 P-450 protein. Polyclonal antibodies raised against the purified reductase reacted with tobacco reductase but not with yeast reductase on Western blot analysis. Anti-yeast reductase antibodies did not react with the tobacco reductase. This result indicate that the tobacco reductase was immunochemically different from the yeast reductase. The anti-tobacco reductase antibodies totally inhibited the tobacco reductase activity, but not the yeast reductase. Also, Western blot analyses using the anti-tobacco reductase antibodies revealed that leaves, roots and shoots of Nicotiana tabacum plants contained an equal amount of the reductase protein. From these results, it was suggested that there are different antibody binding sites, which certainly participate in enzyme activity, between tobacco and yeast reductase.  相似文献   

12.
E. Fernández  J. Cárdenas 《Planta》1981,153(3):254-257
Wild-type Chlamydomonas reinhardii cells have xanthine dehydrogenase activity when grown with nitrate, nitrite, urea, or amino acid media. Mutant strains 102, 104, and 307 of Chlamydomonas, lacking both xanthine dehydrogenase and nitrate reductase activities, were incapable of restoring the NADPH-nitrate reductase activity of the mutant nit-1 of Neurospora crassa, whereas wild type cells and mutants 203 and 305 had xanthine dehydrogenase and were able to reconstitute the nitrate reductase activity of nit-1 of Neurospora. Therefore, it is concluded that in Chlamydomonas a common cofactor is shared by xanthine dehydrogenase and nitrate reductase. Xanthine dehydrogenase is repressed by ammonia and seems to be inessential for growth of Chlamydomonas.  相似文献   

13.
Evidence for an alternative nitrogen fixation system which is expressed under conditions of molybdenum deficiency has been reported in Azotobacter vinelandii (Bishop, P.E., Jarlenski, D.M.L. and Hetherington, D.R., Proc. Natl. Acad. Sci. U.S.A. (1980) 77, 7342–7346). In the present report we describe the existence of activity for a dinitrogenase reductase-like enzyme (alternative reductase) in Mo-deficient cell-free extracts of Nif? mutant strains of A. vinelandii which lack either conventional dinitrogenase reductase (strains UW1 and UW3) or contain a defective enzyme (strain UW91) under conditions of Mo-sufficiency. Nitrogenase activities were determined by the acetylene reduction method in a complementation assay where extracts of strain UW91 served as a source of dinitrogenase and extracts of strains UW1, UW3 or UW91 served as a source of alternative reductase. Strains that lack dinitrogenase reductase activity in the presence of Mo, were shown to have alternative reductase activity under Mo-deficient conditions. Two-dimensional gel electrophoretic analysis showed these extracts to contain a protein of similar mobility as the conventional dinitrogenase reductase. Molybdenum and tungsten repressed the formation of the alternative reductase whereas vanadium mimicked Mo deprivation. In conclusion, the results with the Nif? strains provide evidence for the presence of two reductase activities, one of which is expressed in the presence of Mo (dinitrogenase reductase) and the other in the absence of Mo (alternative reductase).  相似文献   

14.
Soybean (Glycine max L. cv Williams) seeds were sown in pots containing a 1:1 perlite-vermiculite mixture and grown under greenhouse conditions. Nodules were initiated with a nitrate reductase expressing strain of Rhizobium japonicum, USDA 110, or with nitrate reductase nonexpressing mutants (NR 108, NR 303) derived from USDA 110. Nodules initiated with either type of strain were normal in appearance and demonstrated nitrogenase activity (acetylene reduction). The in vivo nitrate reductase activity of N2-grown nodules initiated with nitrate reductase-negative mutant strains was less than 10% of the activity shown by nodules initiated with the wild-type strain. Regardless of the bacterial strain used for inoculation, the nodule cytosol and the cell-free extracts of the leaves contained both nitrate reductase and nitrite reductase activities. The wild-type bacteroids contained nitrate reductase but not nitrite reductase activity while the bacteroids of strains NR 108 and NR 303 contained neither nitrate reductase nor nitrite reductase activities.

Addition of 20 millimolar KNO3 to bacteroids of the wild-type strain caused a decrease in nitrogenase activity by more than 50%, but the nitrate reductase-negative strains were insensitive to nitrate. The nitrogenase activity of detached nodules initiated with the nitrate reductase-negative mutant strains was less affected by the KNO3 treatment as compared to the wild-type strain; however, the results were less conclusive than those obtained with the isolated bacteroids.

The addition of either KNO3 or KNO2 to detached nodules (wild type) suspended in a semisolid agar nutrient medium caused an inhibition of nitrogenase activity of 50% and 65% as compared to the minus N controls, and provided direct evidence for a localized effect of nitrate and nitrite at the nodule level. Addition of 0.1 millimolar sucrose stimulated nitrogenase activity in the presence or absence of nitrate or nitrite. The sucrose treatment also helped to decrease the level of nitrite accumulated within the nodules.

  相似文献   

15.
The sensitivity of the two forms of nitrate reductase, NRI and NRII, obtained from the primary leaf of corn, to a limited action corn root proteinase has been examined. The corn inactivating protein (CIP) inhibited the overall reaction (NADH-NR) and the two partial reactions, cytochrome c reductase and reduced methyl viologen NR (MV-NR) of both forms of NR. NADH-cytochrome c reductase was more sensitive to the protease than MV-NR. NRII was less sensitive to inactivation than NRI. When NRI and NRII were inactivated and then subjected to native gel electrophoresis the protein bands associated with MV-NR activity shifted from an Rm value of 0.32 to 0.61 for NRI and from an Rm of 0.28 to 0.60 for NRII. For Chlorella NR these values are 0.32 and 0.70. The initial cleavage of the 116 kilodalton subunit of NRI yielded fragments of 84 and 80 kilodaltons after a 5 minute incubation with CIP. With longer incubation times smaller fragments were also identified. For the Chlorella NR the initial cleavage products are approximately 68 and 25 kilodaltons. Longer incubation times also led to smaller fragments. The products of hydrolysis by this limited action protease are quite different for the corn and Chlorella NRs.  相似文献   

16.
The repression-derepression control of Nostoc muscorum nitrate reductase was studied with regard to the Mo-cofactor and apoprotein levels. It was found that the synthesis of Mo-cofactor is constitutive but the apoprotein is subject to the repression-derepression control. In NH4+ medium apoprotein synthesis was repressed and in N2 and NO3? media apoprotein synthesis was derepressed. The apoprotein levels were similar in NO3? and N2 media; however, the nitrate reductase activity was lower in N2 medium due to lower Mo-cofactor activity. The lower Mo-cofactor activity in N2-fixing conditions as compared to that in non-N2-fixing conditions was consistent with the earlier view that the Mo-cofactor of nitrate reductase may be a precursor for FeMo-cofactor of nitrogenase.  相似文献   

17.
Summary The nitrate assimilatory pathway in Neurospora crassa is composed of two enzymes, nitrate reductase and nitrite reductase. Both are 2type homodimers. Enzymebound prosthetic groups mediate the electron transfer reactions which reduce inorganic nitrate to an organically utilizable form, ammonium. One, a molybdenum-containing cofactor, is required by nitrate reductase for both enzyme activity and holoenzyme assembly. Three modes of regulation are imposed on the expression of nitrate assimilation, namely: nitrogen metabolite repression, nitrate induction and autogenous regulation by nitrate reductase. In this study, nitrocellulose blots of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) resolved proteins from crude extracts of the wild type and specific nitrate-nonutilizing (nit) mutants were examined for material cross-reactive with antibodies against nitrate reductase and nitrite reductase. The polyclonal antibody preparations used were rendered monospecific by reverse affinity chromatography. Growth conditions which alter the regulatory response of the organism were selected such that new insight could be made into the complex nature of the regulation imposed on this pathway. The results indicate that although nitrate reductase and nitrite reductase are coordinately expressed under specific nutritional conditions, the enzymes are differentially responsive to the regulatory signals.  相似文献   

18.
Summary Nitrate reductase deficient (NR-) cell lines were selected indirectly by their resistance to 40 mM chlorate in protoplast cultures of haploidNicotiana plumbaginifolia. Frequency of the chlorate resistant clones was 5.8×10-5 in non-mutagenized cultures, which could be increased up to 25 times by treatment with N-ethyl-N-nitrosourea (NEU) or gamma irradiation.Out of 136 chlorate resistant clones 29 were fully deficient in nitrate reductase. The rest of the clones contained decreased or normal levels of NR activity (91 and 16 clones, respectively).Further characterization was carried out in 9 clones which were fully deficient in NR and in 2 clones containing resisdual (0–5%) NR activity. The clones were tentatively classified as defective in the apoenzyme (7 clones including the 2 with residual NR activity) or the cofactor (4 clones) of NR by the xanthine dehydrogenase activity and in vitro enzyme complementation. The cofactor defectives could be further classified into two groups. In one of these (2 clones) the NR activity could be partially restored by unphysiologically high (0.2–1 mM) molybdate in the culture medium. The other two are new types which have not been described in flowering plants.Plant regeneration was obtained only in the clones which contained residual NR activity.  相似文献   

19.
A pot experiment was conducted to investigate into effects of molybdenum (Mo) on the secondary metabolic process of glycyrrhizic acid (GA). One-year-old seedlings were grown in pots with washed vermiculite and sand. Hoagland nutrition solution was irrigated with four concentrations: 0, 0.52, 5.2 and 10.4 mg L−1. The accumulations of GA and its biosynthetic precursors (β-amyrin and squalene) and then expression of the key synthase (β-amyrin synthase, β-AS) were studied on 35, 70 and 105 d. In the early stage, that was on the 35 and 70 d, the contents of squalene and GA, and the expression of β-AS gene under 0.52 and 5.2 mg L−1 Mo treatments were significantly higher than that under 0 and 10.4 mg L−1 Mo. There was a contrary result of β-amyrin. However, the content of squalene under 0 mg L−1 Mo was the highest on 105 d. Thus, it suggested an appropriate concentration of Mo could promote the accumulation of GA, by affecting the biosynthetic process of GA at a certain time. Practically, the time and amount of application of Mo on Glycyrrhiza uralensis should be the noted.  相似文献   

20.
The synthesis and accumulation of nitrite has been suggested as a causative factor in the inhibition of legume nodules supplied with nitrate. Plants were grown in sand culture with a moderate level of nitrate (2.1 to 6.4 millimolar) supplied continuously from seed germination to 30 to 50 days after planting. In a comparison of nitrate treatments, a highly significant negative correlation between nitrite concentration in soybean (Glycine max [L.] Merr.) nodules and nodule fresh weight per shoot dry weight was found even when bacteroids lacked nitrate reductase (NR). However, in a comparison of two Rhizobium japonicum strains, there was only 12% as much nitrite in nodules formed by NRR. japonicum as in nodules formed by NR+R. japonicum, and growth and acetylene reduction activity of both types of nodules was about equally inhibited. In a comparison of eight other NR+ and NRR. japonicum strains, and a comparison of G. max, Phaseolus vulgaris, and Pisum sativum, the concentration of nitrite in nodules was unrelated to nodule weight per plant or to specific acetylene reduction activity. The very small concentration of nitrite found in P. vulgaris nodules (0.05 micrograms NO2-N per gram fresh weight) was probably below that required for the inhibition of nitrogenase based on published in vitro experiments, and yet the specific acetylene reduction activity was inhibited 83% by nitrate. The overall results do not support the idea that nitrite plays a role in the inhibition of nodule growth and nitrogenase activity by nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号