共查询到20条相似文献,搜索用时 0 毫秒
1.
Expression of processed core protein of hepatitis C virus in mammalian cells. 总被引:6,自引:3,他引:6 下载免费PDF全文
S Harada Y Watanabe K Takeuchi T Suzuki T Katayama Y Takebe I Saito T Miyamura 《Journal of virology》1991,65(6):3015-3021
A structural protein of hepatitis C virus (HCV) was expressed in monkey COS cells under the control of an exogenous promoter, and a protein of 22 kDa was identified by immunoblot analysis. This protein (p22), which was produced by processing in COS cells, reacted specifically to sera of chronic hepatitis C patients, and its coding region was mapped at the most amino-terminal part of the HCV polyprotein. These results suggested that the p22 protein is the nucleocapsid (core) protein of HCV. Moreover, the assay detecting antibody to p22 was found to be useful for early diagnosis of HCV infection. 相似文献
2.
Expression of human endogenous retrovirus type K envelope glycoprotein in insect and mammalian cells. 下载免费PDF全文
The human endogenous retrovirus type K (HERV-K) family codes for the human teratocarcinoma-derived retrovirus (HTDV) particles. The existence of the envelope protein (ENV) of HERV-K encoded by the subgenomic env mRNA has not yet been demonstrated. To study the genetic requirements for successful expression of ENV, we have constructed a series of recombinant HERV-K env expression vectors for infection and transfection experiments in insect cells and mammalian cells, respectively. Six baculovirus constructs bearing full-length or truncated HERV-K env with or without homologous or heterologous signal peptides were used for infections of insect cells. All recombinant baculoviruses yielded ENV proteins with the expected molecular masses. The full-length 80- to 90-kDa HERV-K ENV protein including the cORF leader sequence was glycosylated in insect cells. In addition, the 14-kDa cORF protein was expressed due to splicing of the full-length env mRNA. The ENV precursor protein is not cleaved to the surface (SU) and transmembrane (TM) glycoproteins; it does not appear on the surface of infected insect cells and is not secreted into the medium. For ENV expression in COS cells, plasmid vectors harboring the cytomegalovirus immediate-early promoter/intron A element and the tissue plasminogen activator (t-PA) signal peptide or the homologous HERV-K signal peptide upstream of the env gene were employed. Glycosylated and uncleaved ENV was expressed as in GH teratocarcinoma cells but at higher levels. The heterologous t-PA signal sequence was instrumental for expression of HERV-K ENV on the cell surface. Hence, we have shown for the first time that the HERV-K env gene has the potential to be expressed as a full-length envelope protein with appropriate glycosylation. In addition, our data provide explanations for the lack of infectivity of HERV-K/HTDV particles. 相似文献
3.
Interaction between hepatitis C virus core protein and E1 envelope protein. 总被引:4,自引:10,他引:4 下载免费PDF全文
Hepatitis C virus has three structural genes named C, E1, and E2. The C gene encodes the core (capsid) protein and the E1 and E2 genes encode the envelope proteins. In an immunoprecipitation experiment, the E1 protein was found to be precipitated by an anti-core antibody in the presence but not in the absence of the core protein, indicating that the E1 protein can interact with the core protein. This interaction is independent of whether the E1 and the C genes are linked in cis or separated in different DNA constructs for expression. The interaction between the core and the E1 proteins is confirmed by the observation that a hybrid protein derived from the core protein and the tissue plasminogen activator is localized in the nucleus in the absence of the E1 protein and in the perinuclear region in the presence of the E1 protein. Deletion-mapping studies indicate that the carboxy-terminal sequences of both the core and the E1 proteins are important for their interaction. Since little E1 sequence is exposed on the cytosolic side of the membrane of the endoplasmic reticulum, the interaction between the core and the E1 proteins most likely takes place in the endoplasmic reticulum membrane. The E2 protein could not be coprecipitated with the core protein by the anti-core antibody in a similar assay and likely does not interact with the core protein. The implications of these findings on the morphogenesis of the hepatitis C virus virion are discussed. 相似文献
4.
HCVisthemajorcauseofposttransfusionnonA,nonBhepatitis[1].About50%oftheinfectionswilldevelopintochronichepatitisandamongthemabout20%willresultinlivercirrhosisandhepatocellularcarcinoma[2].BecausethetiterofHCVparticleinpatient’sbloodisextremelylow,andthereisno… 相似文献
5.
Characterization of hypervariable regions in the putative envelope protein of hepatitis C virus. 总被引:9,自引:0,他引:9
N Kato Y Ootsuyama S Ohkoshi T Nakazawa H Sekiya M Hijikata K Shimotohno 《Biochemical and biophysical research communications》1992,189(1):119-127
We previously identified two hypervariable regions [HVR1 (27 amino acids) and HVR2 (7 amino acids)] in the putative envelope glycoprotein (gp70) by comparison of the amino acid sequences of many isolates of the HCV-II genotype. To understand the functional features of these HVRs, using the polymerase chain reaction we analyzed the rate of actual sequence variability in the region including HVR1 and HVR2 of HCV isolated successively at intervals of several months from two patients with chronic C-type hepatitis. In both patients, the amino acid sequence of HVR1, but not HVR2, was found to change dramatically during the observation period (about one amino acid per month). However, no alteration of the amino acid sequence of HVR1 of HCV was observed in a patient in the acute phase of chronic hepatitis. Restriction digestion analysis of sequence diversity showed that a HCV genome with a newly introduced mutation in HVR1 often became the predominant population at the next time of examination. Alterations of amino acids in HVR1 occurred sequentially in the two patients in the chronic phase. These findings suggest that mutations in HVR1 are involved in the mechanism of persistent chronic HCV infection. 相似文献
6.
7.
Functional hepatitis C virus envelope glycoproteins 总被引:8,自引:0,他引:8
Voisset C Dubuisson J 《Biology of the cell / under the auspices of the European Cell Biology Organization》2004,96(6):413-420
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2, that are released from HCV polyprotein by signal peptidase cleavage. These proteins assemble as a noncovalent heterodimer that is retained in the endoplasmic reticulum. The transmembrane domains of E1 and E2 are multifunctional and play a major role in the biogenesis of E1E2 heterodimer. Because HCV does not replicate efficiently in cell culture, surrogate models have been developed to study some steps of its life cycle. Recently, infectious pseudotype particles (HCVpp) harboring unmodified E1E2 glycoproteins onto retroviral core particles have successfully been generated. They mimic the function of native HCV particles, thus representing a model to study the early steps of its lifecycle. The noncovalent E1E2 heterodimers present at the surface of the HCVpp, which contain complex-type glycans indicating modification by Golgi enzymes, are likely to mediate virus entry. The CD81 tetraspanin and the scavenger receptor SR-BI, two cellular molecules shown to interact with E2, are essential for HCVpp entry. However, these two proteins are not sufficient to provide entry functions in non permissive cells, suggesting that additional unidentified cellular factor(s) are necessary for HCVpp entry. Potential structural homology with other fusion proteins from closely related viruses suggest that HCV envelope glycoproteins belong to class II fusion proteins, but contrary to what is observed for other viral envelope proteins of this class, they are highly glycosylated and are not matured by a cellular endoprotease cleavage. 相似文献
8.
T. I. Kuzmina L. V. Olenina M. A. Sanzhakov T. E. Farafonova T. V. Abramihina J. Dubuisson B. N. Sobolev E. F. Kolesanova 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2009,3(2):177-182
Immunogenicity for laboratory animals (rabbits and mice) of the whole hepatitis C virus envelope proteins and their conserved as well as hypervariable HVR1 sites has been investigated. Rabbit immune responses to HCV envelope proteins (both single E2 and E1E2 heterodimer) were shown to be much more efficient than murine immune responses. Rabbit immunization with E2 protein caused formation of antibodies to several highly conserved linear B-epitopes of this protein as well as to the N-terminal fragment of the hypervariable region HVR1. Epitopes in the CR2 region were determined for the first time. There was cross-reactivity between the N-terminal fragment of the protein E2 hypervariable region HVR1 and the octapeptide fragment of the protein E1 conserved region CR1, which shared four identical amino acid residues. 相似文献
9.
Membrane binding properties and terminal residues of the mature hepatitis C virus capsid protein in insect cells 下载免费PDF全文
The immature core protein (p23, residues 1 to 191) of hepatitis C virus undergoes posttranslational modifications including intramembranous proteolysis within its C-terminal signal sequence by signal peptide peptidase to generate the mature form (p21). In this study, we analyzed the cleavage site and other amino acid modifications that occur on the core protein. To produce the posttranslationally modified core protein, we used a baculovirus-insect cell expression model system. As previously reported, p23 is processed to form p21 in insect as well as in mammalian cells. p21 was found to be associated with the cytoplasmic membrane, and its significant portion behaved as an integral membrane protein. The protein was purified from the membrane by a simple and unique procedure on the basis of its membrane-binding properties and solubility in detergents. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of purified p21 showed that the average molecular mass (m/z 19,307) of its single-charged ion differs by m/z 1,457 from that calculated for p23. To determine the posttranslational modifications, tryptic p21 peptides were analyzed by MALDI-TOF MS. We found three peptides that did not match the theoretically derived peptides of p23. Analysis of these peptides by MALDI-TOF tandem MS revealed that they correspond to N-terminal peptides (residues 2 to 9 and 2 to 10) starting with alpha-N-acetylserine and C-terminal peptide (residues 150 to 177) ending with phenylalanine. These results suggest that the mature core protein (molecular mass of 19,306 Da) includes residues 2 to 177 and that its N terminus is blocked with an acetyl group. 相似文献
10.
Glycosylation of hepatitis C virus envelope proteins 总被引:7,自引:0,他引:7
Enveloped viruses are surrounded by a membrane derived from the host-cell that contains proteins called "envelope proteins". These proteins play a major role in virus assembly and entry. In most of the enveloped viruses, they are modified by N-linked glycosylation which is supposed to play a role in their stability, antigenicity and biological functions. Glycosylation is also known to play a major role in the biogenesis of proteins by being directly and/or indirectly involved in protein folding. Recent studies on hepatitis C virus (HCV) envelope proteins have revealed a complex interplay between cleavage by signal peptidase, folding and glycosylation. The knowledge that has been accumulated on the early steps of glycosylation of these proteins is presented in this review. 相似文献
11.
Expression of envelope glycoproteins of human immunodeficiency virus by an insect virus vector. 总被引:3,自引:2,他引:3 下载免费PDF全文
The envelope gene of human immunodeficiency virus was inserted into the genome of an insect virus vector (Autographa californica nuclear polyhedrosis virus). Upon infection of tissue culture cells, this recombinant virus produced immunoreactive polypeptides related to the envelope glycoproteins of human immunodeficiency virus. Serological survey indicates such polypeptides would be of value as antigens in diagnostics for acquired immunodeficiency syndrome. 相似文献
12.
Cyanovirin-N inhibits hepatitis C virus entry by binding to envelope protein glycans 总被引:8,自引:0,他引:8
Helle F Wychowski C Vu-Dac N Gustafson KR Voisset C Dubuisson J 《The Journal of biological chemistry》2006,281(35):25177-25183
Inhibition of viruses at the stage of viral entry provides a route for therapeutic intervention. Because of difficulties in propagating hepatitis C virus (HCV) in cell culture, entry inhibitors have not yet been reported for this virus. However, with the development of retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the recent progress in amplification of HCV in cell culture (HCVcc), studying HCV entry is now possible. In addition, these systems are essential for the identification and the characterization of molecules that block HCV entry. The lectin cyanovirin-N (CV-N) has initially been discovered based on its potent activity against human immunodeficiency virus. Because HCV envelope glycoproteins are highly glycosylated, we sought to determine whether CV-N has an antiviral activity against this virus. CV-N inhibited the infectivity of HCVcc and HCVpp at low nanomolar concentrations. This inhibition is attributed to the interaction of CV-N with HCV envelope glycoproteins. In addition, we showed that the carbohydrate binding property of CV-N is involved in the anti-HCV activity. Finally, CV-N bound to HCV envelope glycoproteins and blocked the interaction between the envelope protein E2 and CD81, a cell surface molecule involved in HCV entry. These data demonstrate that targeting the glycans of HCV envelope proteins is a promising approach in the development of antiviral therapies to combat a virus that is a major cause of chronic liver diseases. Furthermore, CV-N is a new invaluable tool to further dissect the early steps of HCV entry into host cells. 相似文献
13.
Op De Beeck A Voisset C Bartosch B Ciczora Y Cocquerel L Keck Z Foung S Cosset FL Dubuisson J 《Journal of virology》2004,78(6):2994-3002
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2, that assemble as a noncovalent heterodimer which is mainly retained in the endoplasmic reticulum. Because assembly into particles and secretion from the cell lead to structural changes in viral envelope proteins, characterization of the proteins associated with the virion is necessary in order to better understand how they mature to be functional in virus entry. There is currently no efficient and reliable cell culture system to amplify HCV, and the envelope glycoproteins associated with the virion have therefore not been characterized yet. Recently, infectious pseudotype particles that are assembled by displaying unmodified HCV envelope glycoproteins on retroviral core particles have been successfully generated. Because HCV pseudotype particles contain fully functional envelope glycoproteins, these envelope proteins, or at least a fraction of them, should be in a mature conformation similar to that on the native HCV particles. In this study, we used conformation-dependent monoclonal antibodies to characterize the envelope glycoproteins associated with HCV pseudotype particles. We showed that the functional unit is a noncovalent E1E2 heterodimer containing complex or hybrid type glycans. We did not observe any evidence of maturation by a cellular endoprotease during the transport of these envelope glycoproteins through the secretory pathway. These envelope glycoproteins were recognized by a panel of conformation-dependent monoclonal antibodies as well as by CD81, a molecule involved in HCV entry. The functional envelope glycoproteins associated with HCV pseudotype particles were also shown to be sensitive to low-pH treatment. Such conformational changes are likely necessary to initiate fusion. 相似文献
14.
Kao JH Chen PJ Lai MY Yang PM Sheu JC Wang TH Chen DS 《Journal of biomedical science》1994,1(3):158-162
The nucleotide sequences of the putative envelope region (E1) and the junction between the E1 and envelope 2/nonstructural 1 (E2/NS1) region of the hepatitis C virus (HCV) genome are divergent among different genotypes. To characterize them, we introduced a set of nested primers that are conserved among four different genotypes (types I–IV) of HCV for polymerase chain reaction (PCR) amplification. The amplified products include the variable full-length E1 region, and the 5 end of the E2/NS1 region, the so-called hypervariable region-1 (HVR-1). Of 53 patients with histologically confirmed chronic liver disease and HCV viremia, type II virus was the most dominant strain as detected by the PCR genotyping method and the envelope region could be amplified in more than half of them irrespective of their genotypes. The specificity was confirmed by subsequent nucleotide sequence analysis. The positivity of envelope region PCR was not correlated with histologic diagnosis and hepatitis activities in these patients. Our results suggest that the nested primers can amplify the variable E1 and hypervariable 5 end of E2/NS1 of the HCV genome with moderate efficiency, and thus will be useful in future studies of HCV infections. 相似文献
15.
Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and l-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed inE. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCI density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBcAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B144C191. Using those fusion proteins, ELISA for screening of antibodies against both HBV and HCV in human sera was also established. 相似文献
16.
17.
Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and 1-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed in E. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCl density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBeAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B14d 相似文献
18.
Sulfated homologues of heparin inhibit hepatitis C virus entry into mammalian cells 总被引:1,自引:0,他引:1 下载免费PDF全文
The mechanism of entry of hepatitis C virus (HCV) through interactions between the envelope glycoproteins and specific cell surface receptors remains unclear at this time. We have previously shown with the vesicular stomatitis virus (VSV)/HCV pseudotype model that the hypervariable region 1 of the HCV E2 envelope glycoprotein helps in binding with glycosaminoglycans present on the cell surface. In this study, we have examined the binding of HCV envelope glycoproteins with chemically modified derivatives of heparin. Furthermore, we have determined the functional relevance of the interaction of heparin derivatives with HCV envelope glycoproteins for infectivity by using a human immunodeficiency virus (HIV)/HCV pseudotype, a VSV/HCV pseudotype, and cell culture-grown HCV genotype 1a. Taken together, our results suggest that the HCV envelope glycoproteins rely upon O-sulfated esters of a heparin homologue to facilitate entry into mammalian cells. 相似文献
19.
Fenouillet E Lavillette D Loureiro S Krashias G Maurin G Cosset FL Jones IM Barbouche R 《The Journal of biological chemistry》2008,283(39):26340-26348
Disulfide bonding contributes to the function and antigenicity of many viral envelope glycoproteins. We assessed here its significance for the hepatitis C virus E2 envelope protein and a counterpart deleted for hypervariable region-1 (HVR1). All 18 cysteine residues of the antigens were involved in disulfides. Chemical reduction of up to half of these disulfides was compatible with anti-E2 monoclonal antibody reaction, CD81 receptor binding, and viral entry, whereas complete reduction abrogated these properties. The addition of 5,5'-dithiobis-2-nitrobenzoic acid had no effect on viral entry. Thus, E2 function is only weakly dependent on its redox status, and cell entry does not require redox catalysts, in contrast to a number of enveloped viruses. Because E2 is a major neutralizing antibody target, we examined the effect of disulfide bonding on E2 antigenicity. We show that reduction of three disulfides, as well as deletion of HVR1, improved antibody binding for half of the patient sera tested, whereas it had no effect on the remainder. Small scale immunization of mice with reduced E2 antigens greatly improved serum reactivity with reduced forms of E2 when compared with immunization using native E2, whereas deletion of HVR1 only marginally affected the ability of the serum to bind the redox intermediates. Immunization with reduced E2 also showed an improved neutralizing antibody response, suggesting that potential epitopes are masked on the disulfide-bonded antigen and that mild reduction may increase the breadth of the antibody response. Although E2 function is surprisingly independent of its redox status, its disulfide bonds mask antigenic domains. E2 redox manipulation may contribute to improved vaccine design. 相似文献
20.
C Ferrari M Pilli A Penna A Bertoletti A Valli A Cavalli G Pasetti F Fiaccadori 《Journal of virology》1992,66(4):2536-2540
Processing and presentation by T cells appear to be limited to antigens that can directly interact with the T-cell surface, thereby overcoming the T-cell inefficiency in antigen capture and internalization. Our study provides evidence that the hepatitis B virus (HBV) envelope proteins can also be efficiently processed and presented by CD4+ and CD8+ T cells to other T cells in a human leukocyte antigen class II-restricted fashion. This phenomenon suggests a receptor-mediated interaction between T cells and the HBV envelope and defines a system that can, we hope, be exploited for the identification of the receptor binding site within the HBV envelope and for the characterization of the putative cellular HBV receptor. 相似文献