首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sorghum bicolor L. Moench, RS 610, was grown in liquid media salinized with NaCl, KCl, Na2SO4, K2SO4 or with variable mixtures of either NaCl/KCl or Na2SO4/K2SO4 at osmotic potentials ranging from 0 to -0.8 MPa. The purpose was to study the effects of different types and degrees of salinity in growth media on growth and solute accumulation. In 14-day-old plants the severity of leaf growth inhibition at any one level of osmotic potential in the medium increased according to the following order: NaCl < Na2SO4 < KCl = K2SO4. Inhibition of growth by mixtures of Na+ and K+ salts was the same as by K+ salts alone. Roots responded differently. Root growth was not affected by Na+ salts in the range of 0 to -0.2 MPa while it was stimulated by K+ salts. The major cation of leaves was K+ because S. bicolor is a Na+-excluder, while Na+ was the major cation in roots except at low Na+/K+ ratios in media. Anions increased in tissues linearly in relation to total monovalent cation, but not with a constant anion/cation ratio. This ratio increased as the cation concentrations in tissues increased. Sucrose in leaf tissue increased 75 fold in Chloride-plants (plants growing in media in which the only anion of the salinizing salts was Cl?) and 50 fold in Sulphate-plants (the only anion of the salinizing salts was SO42-). Proline increased 60 and 18 fold in Chloride- and Sulphate-plants, respectively, as growth media potentials decreased from 0 to -0.8 MPa. The concentrations of both sucrose and proline were directly proportional to the amount of total monovalent cation in the tissue. Sucrose concentrations began increasing when total monovalent cations exceeded 100 μmol (g fresh weight)?1 (the monovalent cation level in non-stressed plants), but proline did not start accumulating until monovalent cation concentrations exceeded 200 μmol (g fresh weight)?1. Therefore, sucrose seemed to be the solute used for osmotic adjustment under mild conditions of saline stress while proline was involved in osmotic adjustment under more severe conditions of stress. Concentrations of inorganic phosphate, glucose, fructose, total amino acids and malic acid fluctuated in both roots and leaves in patterns that could be somewhat correlated with saline stress and, sometimes, with particular salts in growth media. However, the changes measured were too small (at most a 2–3 fold increase) to be of importance in osmotic adjustment.  相似文献   

2.
With 3-O-methylfluorescein phosphate (3-OMFP) as substrate for the phosphatase reaction catalyzed by the (Na+ + K+)-ATPase, a number of properties of that reaction differ from those with the common substratep-nitrophenyl phosphate (NPP): theK m is 2 orders of magnitude less and the Vmax is two times greater, and dimethyl sulfoxide (Me2SO) inhibits rather than stimulates. In addition, reducing the incubation pH decreases both theK m and Vmax for K+-activated 3-OMFP hydrolysis as well as theK 0.5 for K+ activation. However, reducing the incubation pH increases inhibition by Pi and the Vmax for 3-OMFP hydrolysis in the absence of K+. When choline chloride is varied reciprocally with NaCl to maintain the ionic strength constant, NaCl inhibits K+-activated 3-OMFP hydrolysis modestly with 10 mM KCl, but stimulates (in the range 5–30 mM NaCl) with suboptimal (0.35 mM) KCl. In the absence of K+, however, NaCl stimulates increasingly over the range 5–100 mM when the ionic strength is held constant. These observations are interpreted in terms of (a) differential effects of the ligands on enzyme conformations; (b) alternative reaction pathways in the absence of Na+, with a faster, phosphorylating pathway more readily available to 3-OMFP than to NPP; and (c) a (Na+ + K+)-phosphatase pathway, most apparent at suboptimal K+ concentrations, that is also more readily available to 3-OMFP.Abbreviations Et3N triethyl amine - FITC fluorescein isothiocyanate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonate - MES 2-(N-morpholino)ethanesulfonate - Me2SO dimethyl sulfoxide - NPP p-nitrophenyl phosphate - 3-OMFP 3-O-methylfluorescein phosphate - TNP-ATP 2, (or 3)-O-(2,4,6-trinitrophenyl)-ATP  相似文献   

3.
Salinity remarkably inhibits NO3 - uptake but the mechanisms are not well understood. This study was addressed to elucidate the role of ionic and osmotic components of salinity on NO3 - influx and efflux employing classic kinetics involving a low affinity transport system (LATS) and a high affinity transport system (HATS). In the presence of KCl, NaCl, and Na2SO4 at 100 mM concentrations, in both LATS and HATS, Michaelis constant (Km) was similar for the three salts and maximum rate (Vmax) decreased as follows: KCl > NaCl > Na2SO4, compared to control indicating a non-competitive interaction with NO3 -. Unexpectedly, iso-osmotic solutions (osmotic potential Ψπ = -0.450) of polyethylene glycol (PEG, 17.84 %, v/v) and mannitol (100 mM) remarkably increased Km in both the LATS and the HATS, but Vmax did not change indicating a competitive inhibition. Under the PEG and mannitol treatments, Km and Vmax were higher than under the salt treatments. The salts increased slightly NO3 - efflux in the following order KCl > NaCl > Na2SO4. In contrast, mannitol strongly stimulated and the PEG inhibited NO3 - efflux. The obtained data reveal that salinity effects were not dependent on the anion type (Cl- versus SO4 2-) indicating a non-competitive inhibition mechanism between Cl- and NO3 -. In contrast, the cation types (K+ versus Na+) had a pronounced effect. The osmotic component is important to net NO3 - uptake affecting remarkably the influx in both LATS and HATS components of cowpea roots.  相似文献   

4.
1.25 per cent gelatin solutions containing enough NaOH to bring them to pH 7.367 (or KOH to pH 7.203) were made up with various concentrations of NaCl, KCl and MgCl2, alone and in mixtures, up to molar ionic strength. The effects of these salts on the pH were observed. MgCl2 and NaCl alone lower the pH of the Na gelatinate or the K gelatinate, in all amounts of these salts. KCl first lowers the pH (up to 0.01 M K+), then raises the pH. Mixtures of NaCl and KCl (up to 0.09 M of the salt whose concentration is varied) raise the pH; then (up to 0.125 M Na+ or K+) lower the pH; and finally (above 0.125 M) behave like KCl alone. Mixtures of MgCl2 and NaCl raise the pH up to 0.10 M Na+, and lower it up to 0.15 M Na+ regardless of the amount of MgCl 2. Higher concentrations of NaCl have little effect, but the pH in this range of NaCl concentration is lowered with increase of MgCl2. Mixtures of MgCl2 and KCl behave as above described (for MgCl2 and NaCl) and the addition of NaCl plus KCl to gelatin containing MgCl2 produces essentially the same effect as the addition of either alone, except that the first two breaks in this curve come at 0.07 M and 0.08 M [Na+ + K+] and there is a third break at 0.12 M. In this pH range the free groups of the dicarboxylic acids and of lysine are essentially all ionized and the prearginine and histidine groups are essentially all non-ionized. The arginine group is about 84 per cent ionized. Hence we are studying a solution with two ionic species in equilibrium, one with the arginine group ionized, and one with it non-ionized. It is shown that the effect of each salt alone depends upon the effect of the cation on the activity of these two species due to combination. The anomalous effects of cation mixtures may be qualitatively accounted for if one or both of these species fail to combine with the cations in a mixture in proportion to the relative combination in solutions of each cation alone. Special precautions were taken to ensure accuracy in the pH measurements. The mother solutions gave identical readings to 0.001 pH and the readings with salts were discarded when not reproducible to 0.003 pH. All doubtful data were discarded.  相似文献   

5.
ABSTRACT The relative capacity of Na+, K+ and Cl- to stimulate germination of spores of the microsporidian Nosema algerae, a pathogen of mosquitoes, was examined by ion substitution experiments. Sodium at 0.1 M was ineffective to produce the high percentage of germination that typically occurs with 0.1 M NaCl (the normal stimulation solution) if Cl- was substituted with the usually impermeant anions SO42-, HPO42-, or the organic acids oxalate, cacodylate, EGTA, MES and HEPES. However, substantial concentration- and pH-dependent germination was seen with Na2SO4 in the 0.2-0.8 M Na+ range. Similar results were obtained with solutions of K+ accompanied by impermeant anions. In contrast, the chloride salts of usually impermeant cations, like choline and triethanolamine, failed to germinate spores even at 0.8 M unless Na+ or K+ was independently added. The presence of 0.5 M choline chloride in the medium reduced the levels of Na2SO4 required to produce germination down to equivalence with those of Na+ in the normal stimulation solution. Monensin, a Na+ ionophore, facilitated the germination induced by a medium-level stimulus (0.04 M NaCl) in sonicated samples. These findings indicate that N. algerae spores germinate in response to the alkali metal cations, while CI- plays a passive role by diffusing to maintain internal electroneutrality during cation influx. A possible mechanism of cation action in spore germination is suggested on the basis of these results and observations on other systems of intracellular motility.  相似文献   

6.
Photosynthesis, stroma-pH, and internal K+ and Cl concentrations of isolated intact chloroplasts from Spinacia oleracea, as well as ion (K+, H+, Cl) movements across the envelope, were measured over a wide range of external KCl concentrations (1-100 millimolar).

Isolated intact chloroplasts are a Donnan system which accumulates cations (K+ or added Tetraphenylphosphonium+) and excludes anions (Cl) at low ionic strength of the medium. The internally negative dark potential becomes still more negative in the light as estimated by Tetraphenylphosphonium+ distribution. At 100 millimolar external KCl, potentials both in the light and in the dark and also the light-induced uptake of K+ or Na+ and the release of protons all become very small. Light-induced K+ uptake is not abolished by valinomycin suggesting that the K+ uptake is not primarily active. Intact chloroplasts contain higher K+ concentrations (112-157 millimolar) than chloroplasts isolated in standard media. Photosynthetic activity of intact chloroplasts is higher at 100 millimolar external KCl than at 5 to 25 millimolar. The pH optimum of CO2 fixation at high K+ concentrations is broadened towards low pH values. This can be correlated with the observation that high external KCl concentrations at a constant pH of the suspending medium produce an increase of stroma-pH both in the light and in the dark. These results demonstrate a requirement of high external concentrations of monovalent cations for CO2 fixation in intact chloroplasts.

  相似文献   

7.
Atriplex prostrata was grown for one month in nutrient solutions with NaCl, KCl, Na2SO4, and K2SO4 (at osmotic potentials of 0, –0.75, –1.00, and –1.50 MPa). Plants treated with K2SO4 had less glycinebetaine at –1.0 and –1.50 MPa than those treated with Na+ salts, probably due to the inhibitory effects of K+ on glycinebetaine accumulation.  相似文献   

8.
R. Behl  K. Raschke 《Planta》1986,167(4):563-568
Excised Na+-starved barley roots were suspended in solutions of Na+ in combination with NO 3 - , Cl-, and SO 4 2- , and effects of the added phytohormone, abscisic acid (ABA), to the medium were determined. Abscisic acid increased the rate of Na+ (22Na+) accumulation and the amount of Na+ deposited in the vacuoles. These stimulating effects of ABA were modified by anions following the sequence NO 3 - >Cl->SO 4 2- . Testing whether the magnitude of the pH gradient across the plasmalemma of the cells of the root cortex affects rates of Na+ accumulation and their dependence upon ABA, we observed that, in the pH range from 4 to 8, the ABA-induced stimulation was strongest at pH 5.8, and least at pH 4. Changes in pH during the experiment caused changes in the rates of Na+ accumulation in agreement with experiments performed at constant pH values. Simultaneously with ABA-enhanced accumulation, loss of Na+ occurred. Loss of Na+ was strongest at pH 4 and was affected by anions, being greatest with SO 4 2- and following the sequence SO 4 2- >Cl->NO 3 - . On the basis of the finding that initial acceleration of uptake as well as loss of Na+ depended on the pH of the medium we suggest that, in barley roots, ABA stimulates an exchange of Na+ for H+ at the plasmalemma of the cortical cells. The results indicate that ABA-stimulated expulsion of Na+, in combination with ABA-stimulated sequestration in the vacuoles, constitutes one of the mechanisms which enable barley plants to tolerate higher than normal levels of Na+.Abbreviations ABA abscisic acid - FW fresh weight  相似文献   

9.
为探究黄河三角洲湿地柽柳灌丛下土壤的盐渍化特征,在黄河三角洲国家级自然保护区(37°35''-12''N,118°33''-119°20''E)黄河入海口附近,根据长势基本一致的原则分别在碱蓬群落、柽柳群落和芦苇群落各选3株柽柳,采集柽柳灌丛下土壤样品,分析土壤盐分和盐碱化参数的空间分布以及距基茎不同距离处研究对象(土壤总盐(TS)、电导率(EC)、pH、交换性钠百分率(ESP))和环境因子(Na+、K+、Ca2+、Mg2+、Cl-、HCO3-、SO2-4)之间的关系。结果表明:(1)研究区土壤为弱碱化盐土,离子含量由高到低依次为Cl->Na+>SO2-4 >Ca2+>Mg2+>HCO-3>K+。除pH在土壤表层数值最低外,表层土壤TS、EC、ESP和盐分离子大于深层土壤,显示表聚性。(2)土壤盐分和盐碱化参数空间分布总体为:在柽柳基茎周围形成"盐谷"、"碱谷"效应, Na+、Mg2+、Cl-表现为"盐谷",K+ 、SO2-4 、Ca2+ 表现为"盐岛"。(3)在整个土壤剖面中,与TS、EC相关性最强的阴阳离子为Mg2+、Cl-,从灌丛中心到灌丛间裸地Ca2+、SO2-4与TS、EC的相关性逐渐减弱,Mg2+、Cl-与TS、EC的相关性逐渐增强。Ca2+和SO2-4与pH表现为较强的负相关性;与ESP相关性最强的阴离子为HCO-3,与之相关性最强的阳离子为Na+和K+,并且Na+和K+与ESP的相关性表现出从灌丛中心向外逐渐增强。(4)土壤盐渍化主要受控于Na+,从灌丛下到灌丛间裸地Cl-对盐渍化程度的影响逐渐增加,SO2-4的影响逐渐降低。  相似文献   

10.
In order to identify physiological components that contribute to salinity tolerance, we compared the effects of Na+, Mg2+ and K+ salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl and K2SO4), Ca2+ (CaSO4), mannitol and melibiose on the wild type and the single-gene NaCl-tolerant mutants stl1 and stl2 of Ceratopteris richardii. Compared with gametophytic growth of the wild type, stl2 showed a low level of tolerance that was restricted to Na+ salts and osmotic stress. stl2 exhibited high tolerance to both Na+ and Mg2+ salts, as well as to osmotic stress. In response to short-term exposure (3 d) to NaCl, accumulation of K+ and Na+ was similar in the wild type and stl1. In contrast, stl2 accumulated higher levels of K+ and lower levels of Na+. Ca2+ supplementation (1.0 mol m?3) ameliorated growth inhibition by Na+ and Mg2+ stress in wild type and stll, but not in stl2. In addition, under Na+ stress (175 mol m?3) wild-type, stll and stl2 gametopbytes maintained higher tissue levels of K+ and lower levels of Na+ when supplemented with Ca2+ (1.0 mol m?3). stl2 gametophytes were extremely sensitive to K+ supplementation. Growth of stl2 was greater than or equal to that of the wild type at trace concentrations of K+ but decreased substantially with increasing K+ concentration. Supplementation with K+ from 0 to 1.85 mol m?3 alleviated some of the inhibition by 75 mol m?3 NaCl in the wild type and in stl1. In stl2, growth at 75 mol m?3 NaCl was similar at 0 and 1.85 mol m?3 K+ supplementation. Although K+ supplementation above 1.85 mol m?3 did not alleviate inhibition of growth by Na+ in any genotype, stl2 maintained greater relative tolerance to NaCl at all K+ concentrations tested.  相似文献   

11.
Previous studies have shown that hypoxia induces nitric oxide synthase-mediated generation of nitric oxide free radicals leading to peroxynitrite production. The present study tests the hypothesis that hypoxia results in NO-mediated modification of Na+, K+-ATPase in the fetal brain. Studies were conducted in guinea pig fetuses of 58-days gestation. The mothers were exposed to FiO2 of 0.07% for 1 hour. Brain tissue hypoxia in the fetus was confirmed biochemically by decreased ATP and phosphocreatine levels. P2 membrane fractions were prepared from normoxic and hypoxic fetuses and divided into untreated and treated groups. The membranes were treated with 0.5 mM peroxynitrite at pH 7.6. The Na+, K+-ATPase activity was determined at 37°C for five minutes in a medium containing 100 mM NaCl, 20 mM KCl, 6.0 mM MgCl2, 50 mM Tris HCl buffer pH 7.4, 3.0 mM ATP with or without 10 mM ouabain. Ouabain sensitive activity was referred to as Na+, K+-ATPase activity. Following peroxynitrite exposure, the activity of Na+, K+-ATPase in guinea pig brain was reduced by 36% in normoxic membranes and further 29% in hypoxic membranes. Enzyme kinetics was determined at varying concentrations of ATP (0.5 mM-2.0 mM). The results indicate that peroxynitrite treatment alters the affinity of the active site of Na+, K+-ATPase for ATP and decreases the Vmax by 35% in hypoxic membranes. When compared to untreated normoxic membranes Vmax decreases by 35.6% in treated normoxic membranes and further to 52% in treated hypoxic membranes. The data show that peroxynitrite treatment induces modification of Na+, K+-ATPase. The results demonstrate that peroxynitrite decreased activity of Na+, K+-ATPase enzyme by altering the active sites as well as the microenvironment of the enzyme. We propose that nitric oxide synthase-mediated formation of peroxynitrite during hypoxia is a potential mechanism of hypoxia-induced decrease in Na+, K+-ATPase activity.  相似文献   

12.
It has been shown that the intracellular concentrations of Na+, K+, and Cl? ions in Desulfonatronum thiodismutans depend on the extracellular concentration of Na+ ions. An increase in the extracellular concentration of Na+ results in the accumulation of K+ ions in cells, which points to the possibility that these ions perform an osmoprotective function. When the concentration of the NaCl added to the medium was increased to 4%, the concentration gradient of Cl? ions changed insignificantly. It was found that D. thiodismutans contains two forms of hydrogenase—periplasmic and cytoplasmic. Both enzymes are capable of functioning in solutions with high ionic force; however they exhibit different sensitivities to Na+, K+, and Li+ salts and pH. The enzymes were found to be resistant to high concentrations of Na+ and K+ chlorides and Na+ bicarbonate. The cytoplasmic hydrogenase differed significantly from the periplasmic one in having much higher salt tolerance and lower pH optimum. The activity of these enzymes depended on the nature of both the cationic and anionic components of the salts. For instance, the inhibitory effect of NaCl was less pronounced than that of LiCl, whereas Na+ and Li+ sulfates inhibited the activity of both hydrogenase types to an equal degree. The highest activity of these enzymes was observed at low Na+ concentrations, close to those typical of cells growing at optimal salt concentrations.  相似文献   

13.
Bush LP 《Plant physiology》1969,44(3):347-350
Succinyl CoA synthetase from Nicotiana tabacum exhibited a requirement for univalent and divalent cations. Mn2+ replaced Mg2+ in the assay medium and Co2+ and Ca2+ partially replaced Mg2+. Addition of Zn2+ resulted in no enzyme activity. The enzyme was activated by univalent cations K+, Rb+, NH4+, and Na+; Li+ showed little or no activation. Maximum enzyme activity varied significantly with potassium salts of different anions. Greatest activation was obtained with K3PO4 and, respectively, KCl, KNO3, K2SO4 and KF exhibited steadily decreasing enzyme activation.  相似文献   

14.
Four selected NaCl-tolerant cell lines of Sour orange (Citrus aurantium) were compared with the nonselected cell line in their growth and internal ion content of Na+, K+, and Cl when exposed to increasing NaCl concentrations. No difference was found among the various NaCl-tolerant cell lines in Na+ and Cl uptake, and all these cell lines took up similar or even larger amounts of Na+ and Cl than the NaCl-sensitive cell line. Exposure of cells of NaCl-sensitive and NaCl-tolerant lines to equal external concentrations of NaCl, resulted in a greater loss of K+ from the NaCl-sensitive cell line. This observation leads to the conclusion that growth and ability to retain high levels of internal K+ are correlated. Exposure of the NaCl-tolerant cell lines to salts other than NaCl resulted in even greater tolerance to Na2SO4, but rather poor tolerance to K+ introduced as either K2SO4 or KCl; the latter has a stronger inhibitory effect. The NaCl-sensitive cell line proved to be more sensitive to replacement of Na+ by K+. Analyses of internal Na+, K+, and Cl concentrations failed to identify any particular internal ion concentration which could serve as a reliable marker for salt tolerance.  相似文献   

15.
Preparations of radioactive lysosomes were obtained from mouse kidney after injection of radioactive iodine-labeled bovine ribonuclease. Stability of these lysosomes in various media was estimated from measurements of proteolytic activity towards the ribonuclease, and of ribonuclease retention in particles. The lysosomes were stable at 37 °C in isotonic, sucrose-free solutions of KCl, NaCl and potassium acetate, and in mixtures of these with MgCl2, showing that these salts are relatively impermeant through the lysosomal membranes. The membranes were less permeable to Na+ than to K+. Both KCl and NaCl exerted their optimal protective effects over a broad concentration range above 0.125 M in 0.025 M acetate buffer. Mg2+ enhanced the protective effect of both K+ and Na+; the osmotic effect of 0.075 M NaCl-0.05 M MgCl2 was indistinguishable during the entire course of ribonuclease digestion from that of isotonic sucrose. Osmotic protection by KCl-MgCl2 was demonstrated over the pH range 5.5–7.0. A marked alteration in membrane properties occurs at lower temperatures in 0.11 M KCl-0.01 M MgCl2 such that, at 0 °C, K+ permeability is much higher than at 37 °C, as shown by a several-fold decrease in stability at the lower temperature.  相似文献   

16.
Summary Overnight accumulation of malate, citrate, and isocitrate in a large number of species of Mesembryanthemaceae grown under identical environmental conditions was studied. Of the 27 species investigated, 24 showed malate accumulation, which in 3 cases was accompanied by considerable overnight accumulation of citrate. In the leaves of the same plants, the Na+, K+, Cl-, SO4 2-, and PO4 3- contents were determined. Although the plants were not exposed to substrates of high NaCl content, they exhibited extraordinarily high levels of Na+ and Cl-. All plants accumulated, much more Na+ than K+. No readily discernible correlation between the amount of any particular ion and the extend of CAM was found. It is concluded that halophilism and CAM are widespread phenomena in the family of Mesembryanthemaceae that possess ecologic significance.Abbreviations CAM Crassulacean Acid Metabolism - PEP Phosphoenolpyruvate On leave from Canberra  相似文献   

17.
Previous studies indicate that the roots of nonhalophytes showed negative halotropism to salt stress to avoid salt damage. However, halotropism of euhalophytes and their possible reasons are little known. Limonium bicolor, a typical recretohalophyte with multicellular salt glands, was used to study halotropism compared with Arabidopsis thaliana under NaCl, KCl and Na2SO4 stress. The elongation of the roots in L. bicolor was significantly promoted by the appropriate concentrations of NaCl, KCl and Na2SO4, but those of A. thaliana was markedly inhibited. However, isosmotic mannitol with 200?mM NaCl did not affect the root growth of both L. bicolor and A. thaliana. The root activity of both L. bicolor and A. thaliana was enhanced by salts. Compared with K+, Cl, and SO42?, Na+ played a critical role in halotropism of L. bicolor. Furthermore, the gravitropic setpoint angle of L. bicolor increased under NaCl, KCl and Na2SO4 treatments compared with controls, and the phenomenon was most apparent under NaCl treatments. The endogenous IAA content of the NaCl-treated L. bicolor seedlings was significantly higher than that of the controls. These results suggest that the recretohalophyte L. bicolor has positive halotropism and Na+ plays a pivotal role in L. bicolor’s positive root halotropism by regulating IAA.  相似文献   

18.
The motility and step-down photophobic responses of Euglena are influenced by inorganic and organic anions. Persistent motility (with Ca2+, Mg2+ and K+ present) is supported with chloride or sulfate but not with acetate, nitrate or propionate as the only added anions. Cells in media containing acetate displayed a cell aggregation (clumping) behavior that was both red light sensitive and, under some conditions, was accompanied by suppression of the step-down photophobic response. Addition of sodium salts (Cl-, SO 4 2- , acetate or propionate) to cells in Cl- or SO 4 2- based media had differential effects on the duration of the step-down photophobic responses induced by blue light removal: anions alter the response. In addition, cells in all Cl- containing media showed constant photophobic response duration following repeated stimulation. Cells in some SO4 2- containing media, however, showed response summation to repeated stimulation. This latter effect was reversible and was overcome by the addition of chloride anions.  相似文献   

19.
  • 1.1. After ionic composition of superficial fluid (ISF) and interstitial fluid (ISF) of the frog Rana catesbeiana) tongue had mostly been changed with a low Na+ saline solution, the relations between membrane potentials and receptor potentials in a frog taste cell evoked by various concentrations of NaCl and various types of salts were analyzed to examine permeability of the taste receptive membrane to cations and anions.
  • 2.2. The mean reversal potentials for depolarizing potentials of a taste cell in response to 0.05 M, 0.2 M and 0.5 M Nad were -40.0, 6.4 and 28.8 mV, respectively.
  • 3.3. When adding an anion channel blocker, SITS, to a NaCl solution the reversal potential for receptor potential with NaCl plus SITS became about twice as large than with NaCl alone.
  • 4.4. Reversal potentials for 0.2 M NaCl, LiCl, KCl and NaSCN were 6.4, 25.4, −1.0 and −7.8 mV, respectively, indicating that permeability of the apical taste receptive membrane to cations of Cl salts is arranged in the order of Li+ > Na+ > K+ and that the permeability to anions of Na+ salts is arranged as SCN > Cl
  • 5.5. It is concluded that in the case of NaCl stimulation, Na+ and Cl of NaCl stimulus permeate NaCl-gated cationic and anionic channels at the apical taste receptive membrane in generating receptor potentials.
  相似文献   

20.
1. When yeast oxidizes propan-2-ol in the presence of KCl no uptake of K+ occurs. 2. When propionate is added to suspensions containing propan-2-ol, or if the suspensions are bubbled with CO2, a considerable uptake of K+ occurs. 3. Maximum K+ uptake occurs at a propionate concentration of 2mm. 4. The addition of 20mm-propionate to the suspension lowers the intracellular pH of the yeast from a resting value in the region of 6.2 to approx. 5.6. 5. When K+ uptake is measured in the presence of 20mm-propionate, progressive changes in the rate of K+ uptake and intracellular pH occur. The optimum rate of K+ uptake occurs at an intracellular pH of 5.70. 6. The effect of both intra- and extra-cellular pH on K+–K+ exchange was studied and an optimum rate was found at an extracellular pH of 5.35, the corresponding intracellular pH being 6.44. 7. When a Na+-loaded yeast oxidizes propan-2-ol in the presence of KCl, a steady efflux of Na+ and influx of K+ occurs. The addition of 10mm-propionate to the suspension markedly inhibited the Na+ efflux but only slightly decreased the K+ influx. 8. The effect of both extra- and intra-cellular pH on Na+ efflux was studied with propan-2-ol and with glucose. The results can be best interpreted in terms of intracellular pH changes, and an optimum was obtained at approx. pH6.40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号