首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Quantum dot materials are increasingly used in cellular assays, and offer a powerful and enabling complement to existing methods of labeling proteins, such as green fluorescent protein. These materials give researchers the ability to study specificity and functional responses in cellular systems, in a highly multiplexed manner, at either a molecular or cellular level. The recent literature bears witness to the increasing use of quantum dots for the investigation of chemicals on biological systems, and paves the way to the use of these assays for high-throughput analysis of functional responses in relevant models at scales including molecular, cellular and whole animal.  相似文献   

2.
Comprehension of biological processes in cells, tissues and organisms requires identification and analysis of numerous biological objects, mechanisms of their action and regulation. Microarray (biochips) technology is a rare tool to solve this problem. It is based on high-throughput recognition of a target to the probe and has the potential to measure simultaneously the presence of numerous molecules in multiplexed testes, all contained in a small drop of test fluid. Biochips allow the parallel analysis of genomic or proteomic content in healthy versus disease-affected or altered tissues or cells. The signals read-out from the biochips is done with organic dyes which often suffer from photobleaching, low brightness and background fluorescence. Recent data show that the use of fluorescent nanocrystals "quantum dots" (QDs) allows push away these restrictions. The QDs are sufficiently bright to be detected as individual particles, extremely resistant to photobleaching and provide unique possibilities for multiplexing thus supplying the microarray technology with the novel read-out option enabling the sensitivity of detection reaching the single molecule level. This paper is aimed at the development of the approaches to the QDs application in microarray-based detection. Possibilities of QDs application both in solid state (planar) biochips as well as intensively developing technique of suspension biochips (bead-based assays or liquid biochips) are demonstrated. The latter are more and more applied for simultaneous identification of very large numbers of molecules in proteomics, genomics, drug screening and clinical diagnostics. This assays base on spectral encoded elements (as a rule polymer microbeads). The benefits of using optically encoded microbeads (instead of the solid-state two-dimensional arrays) are derived from the freedom of bead to move in three dimensions. Polymeric beads optically encoded with organic dyes allow for a limited number of unique codes, whereas the use of semiconductor nanocrystals as fluorescent tags improves the beads multiplexed imaging capabilities, photostability and sensitivity of the biological objects detection. Additionally, an employment in suspension biochips of Frster resonance energy transfer (FRET) allows improving detection specificity. The absence of fluorescent background from non-interacting with the beads dye-labelled antibodies additionally increases the sensitivity of detection and further facilitates the multiplexing capabilities of nanocrystals-based detection and diagnostics. So the combination of the biochips and QDs techniques allow increasing detection sensitivity and significantly raising the number of detected objects (multiplexing capacities). Such combination should provide the breakthrough in proteomics, particularly in new drugs development, clinical diagnostics, new disease markers identification, better understanding of intracellular mechanisms.  相似文献   

3.
Nonspecific binding is a frequently encountered problem with fluorescent labeling of tissue cultures when labeled with quantum dots. In these studies various cell lines were examined for nonspecific binding. Evidence suggests that nonspecific binding is related to cell type and may be significantly reduced by functionalizing quantum dots with poly(ethylene glycol) ligands (PEG). The length of PEG required to give a significant reduction in nonspecific binding may be as short as 12-14 ethylene glycol units.  相似文献   

4.
Potentials and pitfalls of fluorescent quantum dots for biological imaging   总被引:17,自引:0,他引:17  
Fluorescent semiconductor nanocrystals, known as quantum dots (QDs), have several unique optical and chemical features. These features make them desirable fluorescent tags for cell and developmental biological applications that require long-term, multi-target and highly sensitive imaging. The improved synthesis of water-stable QDs, the development of approaches to label cells efficiently with QDs, and improvements in conjugating QDs to specific biomolecules have triggered the recent explosion in their use in biological imaging. Although there have been many successes in using QDs for biological applications, limitations remain that must be overcome before these powerful tools can be used routinely by biologists.  相似文献   

5.
Kim J  Kim KS  Jiang G  Kang H  Kim S  Kim BS  Park MH  Hahn SK 《Biopolymers》2008,89(12):1144-1153
The effect of chemical modification of hyaluronic acid (HA) on its distribution throughout the body was successfully visualized in nude mice through real-time bioimaging using quantum dots (QDots). Adipic acid dihydrazide modified HA (HA-ADH) was synthesized and conjugated with QDots having carboxyl terminal ligands activated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide. The formation of HA-QDot conjugates could be confirmed by gel permeation chromatography, fluorometry, transmission electron microscopy, and zeta-size analysis. According to the real-time bioimaging of HA-QDot conjugates after subcutaneous injection to nude mice, the fluorescence of HA-QDot conjugates with a near infrared wavelength of 800 nm could be detected up to 2 months, whereas that with an emission wavelength of 655 nm disappeared almost completely within 5 days. The results can be ascribed to the fact that near-infrared light has a high penetration depth of about 5-6 cm in the body compared to that of about 7-10 mm for visible light. Thereby, using QDots with a near-infrared emission wavelength of 800 nm, the distribution of HA-QDot conjugates throughout the body was bioimaged in real-time after their tail-vein injection into nude mice. HA-QDot conjugates with 35 mol% ADH content maintaining enough binding sites for HA receptors were mainly accumulated in the liver, while those with 68 mol% ADH content losing much of HA characteristics were evenly distributed to the tissues in the body. The results are well matched with the fact that HA receptors are abundantly present in the liver with a high specificity to HA molecules.  相似文献   

6.
Semiconductor quantum dots show promise as alternatives to organic dyes for biological labelling because of their bright and stable photoluminescence. The typical quantum dots is CdSe because colloidal synthesis for nanocrystals of this semiconductor is well established. CdSe is usually passivated with zinc sulfide. While the cytotoxicity of bulk CdSe is well documented, questions about (CdSe)ZnS potential toxicity and behaviour in vivo remain unanswered. The distribution and stability of (CdSe)ZnS quantum dots in Wistar line rats' digestive tract were investigated. Hydrophobic quantum dots were mixed with fat or sonificated in water and administered orally. The distribution and stability of quantum dots moving through the digestive system of rats was followed by fluorescence spectroscopy. In both ways prepared quantum dots were degraded in the digestive tract of animals. Quantum dots mixed with fat were more stable and degraded more slowly than quantum dots sonificated in water. The data obtained suggest possible toxicity of (CdSe)ZnS quantum dots due to the liberation of Cd(2+).  相似文献   

7.
8.
Photosynthesis Research - Light harvesting in photosynthesis is currently an issue on-debate and studied widely in all over the world. Studies on light harvesting mainly focus on enlightening...  相似文献   

9.
Lin Z  Cui S  Zhang H  Chen Q  Yang B  Su X  Zhang J  Jin Q 《Analytical biochemistry》2003,319(2):239-243
3-Mercaptopropyl acid-stabilized CdTe nanoparticles synthesized in aqueous solution are effectively bound to a biomacromolecule, papain, via electrostatic interaction. The conjugation between the nanoparticles and the papain is demonstrated by UV-Vis absorption, photoluminescence spectroscopy, transmission electron microscopy, and fluorescence micrographs. The biological activity of papain is maintained after the conjugation. The effects of the quantity of papain and the size of nanoparticles on the fluorescence characteristics of the CdTe-papain bioconjugates were studied.  相似文献   

10.
A rapid and sensitive immunoassays of mercury (Hg) in biological samples was developed using quantum dots (QDs) and magnetic beads (MBs) as fluorescent and separated probes, respectively. A monoclonal antibody (mAb) that recognizes an Hg detection antigen (BSA-DTPA-Hg) complex was produced by the injection of BALB/c mice with an Hg immunizing antigen (KLH-DTPA-Hg). Then the ascites monoclonal antibodies were purified. The Hg monoclonal antibody (Hg-mAb) is conjugated with MBs to separate Hg from biological samples, and the other antibody, which is associated with QDs, is used to detect the fluorescence. The Hg in biological samples can be quantified using the relationship between the QDs fluorescence intensity and the concentration of Hg in biological samples following magnetic separation. In this method, the detection linear range is 1–1000 ng/mL, and the minimum detection limit is 1 ng/mL. The standard addition recovery rate was 94.70–101.18%. The relative standard deviation values were 2.76–7.56%. Furthermore, the Hg concentration can be detected in less than 30 min, the significant interference of other heavy metals can be avoided, and the simultaneous testing of 96 samples can be performed. These results indicate that the method could be used for rapid monitoring Hg in the body.  相似文献   

11.
Quantum dots (QDs) are fluorescent semiconductor nanoparticles with size-dependent emission spectra that can be excited by a broad choice of wavelengths. QDs have attracted a lot of interest for imaging, diagnostics, and therapy due to their bright, stable fluorescence. QDs can be conjugated to a variety of bio-active molecules for binding to bacteria and mammalian cells. QDs are also being widely investigated as cytotoxic agents for targeted killing of bacteria. The emergence of multiply-resistant bacterial strains is rapidly becoming a public health crisis, particularly in the case of Gram negative pathogens. Because of the well-known antimicrobial effect of certain nanomaterials, especially Ag, there are hundreds of studies examining the toxicity of nanoparticles to bacteria. Bacterial studies have been performed with other types of semiconductor nanoparticles as well, especially TiO(2), but also ZnO and others including CuO. Some comparisons of bacterial strains have been performed in these studies, usually comparing a Gram negative strain with a Gram positive. With all of these particles, mechanisms of toxicity are attributed to oxidation: either the photogeneration of reactive oxygen species (ROS) by the particles or the direct release of metal ions that can cause oxidative toxicity. Even with these materials, results of different studies vary greatly. In some studies the Gram positive test strain is reportedly more sensitive than the Gram negative; in others it is the opposite. These studies have been well reviewed. In all nanoparticle studies, particle composition, size, surface chemistry, sample aging/breakdown, and wavelength, power, and duration of light exposure can all dramatically affect the results. In addition, synthesis byproducts and solvents must be considered. High-throughput screening techniques are needed to be able to develop effective new nanomedicine agents. CdTe QDs have anti-microbial effects alone or in combination with antibiotics. In a previous study, we showed that coupling of antibiotics to CdTe can increase toxicity to bacteria but decrease toxicity to mammalian cells, due to decreased production of reactive oxygen species from the conjugates. Although it is unlikely that cadmium-containing compounds will be approved for use in humans, such preparations could be used for disinfection of surfaces or sterilization of water. In this protocol, we give a straightforward approach to solubilizing CdTe QDs with mercaptopropionic acid (MPA). The QDs are ready to use within an hour. We then demonstrate coupling to an antimicrobial agent. The second part of the protocol demonstrates a 96-well bacterial inhibition assay using the conjugated and unconjugated QDs. The optical density is read over many hours, permitting the effects of QD addition and light exposure to be evaluated immediately as well as after a recovery period. We also illustrate a colony count for quantifying bacterial survival.  相似文献   

12.
Quantum dots (QDs) are significant fluorescent materials for energy transfer studies with phthalocyanines (Pcs) and phthalocyanine (Pc)-like biomolecules (such as chlorophylls). Carbon-based QDs, especially, have been used in numerous studies concerning energy transfer with chlorophylls, but the numbers of studies concerning energy transfer between phthalocyanines and carbon-based QDs are limited. In this study, peripherally, hydroxythioethyl terminal group substituted metal-free phthalocyanine (H2Pc) and zinc phthalocyanine (ZnPc) were noncovalently (electrostatic and/or π–π interaction) attached to carbon QDs containing boron and nitrogen to form QD-Pc nanoconjugates. The QD-Pc conjugates were characterized using different spectroscopic techniques (Fourier transform infrared spectroscopy and transmission electron microscopy). The absorption and fluorescence properties of QD-Pc structures in solution were studied. It was found that the quantum yields of the QDs slightly decreased from 30% to 25% upon doping the QDs with heteroatoms B and N. Förster resonance energy transfer efficiency was calculated as 33% for BCN-QD/ZnPc. For the other conjugates, almost no energy transfer from QDs to Pc cores was observed. It was shown that the energy transfer between QDs to Pc cores was completely different from the energy transfer between QDs and photosynthetic pigments, and therefore we concluded that heteroatom doping in the QD structure and the existence of zinc metal in the phthalocyanine structure is obligatory for an efficient energy transfer.  相似文献   

13.
Quantum dots (QDs) have been used extensively as fluorescent markers in several studies on living cells. Here, we report the synthesis of conjugates based on glutathione (GSH) and QDs (GSH-QDs) and we prove how these functionalized fluorescent probes can be used for staining a freshwater invertebrate called Hydra vulgaris. GSH is known to promote Hydra feeding response by inducing mouth opening. We demonstrate that GSH-QDs as well are able to elicit biological activity in such an animal, which results in the fluorescent staining of Hydra. GSH-QDs, once they reach the gastric region, are internalized by endodermal cells. The efficiency of GSH-QD internalization increases significantly when nanoparticles are coadministrated with free GSH. We also compared the behavior of bare QDs to that of GSH-QDs both in the presence and in the absence of free GSH. The conclusions from these series of experiments point to the presence of GSH binding proteins in the endodermal cell layer and uncover a novel role played by glutathione in this organism.  相似文献   

14.
The solution structure of a custom lytic peptide, cecropin B3 (CB3), having two identical hydrophobic segments on both the N- and C-termini, was investigated by two-dimensional NMR spectroscopy. The need to determine the structure of this peptide is rooted in its specific ability to lyse lipid layers that have a high content of anionic lipid. The lytic activities of CB3 on cell membranes including cancer cells and bacteria is found to be less than cecropin B1. The results show that CB3 has four discrete segments forming alpha helical structures. The crumpled structure of CB3 provides evidence for the lysis of the lipid layer being via a pathway that differs from pore formation. The results in this study provide strong clues towards a rational design for a potent antimicrobial and antitumor peptide.  相似文献   

15.
A facile capillary electrophoresis (CE) method for the separation of cinnamic acid and its derivatives (3,4-dimethoxycinnamic acid, 4-methoxycinnamic acid, isoferulic acid, sinapic acid, cinnamic acid, ferulic acid, and trans-4-hydroxycinnamic acid) using graphene quantum dots (GQDs) as additives with direct ultraviolet (UV) detection is reported. GQDs were synthesized by chemical oxidization and further purified by a macroporous resin column to remove salts (Na2SO4 and NaNO3) and other impurities. Transmission electron microscopy (TEM) indicated that GQDs have a relatively uniform particle size (2.3 nm). Taking into account the structural features of GQDs, cinnamic acid and its derivatives were adopted as model compounds to investigate whether GQDs can be used to improve CE separations. The separation performance of GQDs used as additives in CE was studied through variations of pH, concentration of the background electrolyte (BGE), and contents of GQDs. The results indicated that excellent separation can be achieved in less than 18 min, which is mainly attributed to the interaction between the analytes and GQDs, especially isoferulic acid, sinapic acid, and cinnamic acid.  相似文献   

16.
由于具有优异的光学特性,量子点在生物医学领域内的研究和应用取得了一些有意义的进展,同时也引起了新药开发人员的兴趣.本文概述了量子点在新药开发中所具有的优势,分析了量子点在药物传输、药物筛选和药靶确证方面的潜在应用,进一步讨论了当前量子点应用于新药开发存在的问题和不足.  相似文献   

17.
Noninvasive imaging of quantum dots in mice   总被引:36,自引:0,他引:36  
Quantum dots having four different surface coatings were tested for use in in vivo imaging. Localization was successfully monitored by fluorescence imaging of living animals, by necropsy, by frozen tissue sections for optical microscopy, and by electron microscopy, on scales ranging from centimeters to nanometers, using only quantum dots for detection. Circulating half-lives were found to be less than 12 min for amphiphilic poly(acrylic acid), short-chain (750 Da) methoxy-PEG or long-chain (3400 Da) carboxy-PEG quantum dots, but approximately 70 min for long-chain (5000 Da) methoxy-PEG quantum dots. Surface coatings also determined the in vivo localization of the quantum dots. Long-term experiments demonstrated that these quantum dots remain fluorescent after at least four months in vivo.  相似文献   

18.
Quantum dots (QDs) are nanocrystals of semiconducting material possessing quantum mechanical characteristics with capability to get conjugated with drug moieties. The particle size of QDs varies from 2 to 10 nm and can radiate a wide range of colours depending upon their size. Their wide and diverse usage of QDs across the world is due to their adaptable properties like large quantum yield, photostability, and adjustable emission spectrum. QDs are nanomaterials with inherent electrical characteristics that can be used as drug carrier vehicle and as a diagnostic in the field of nanomedicine. Scientists from various fields are aggressively working for the development of single platform that can sense, can produce a microscopic image and even be used to deliver a therapeutic agent. QDs are the fluorescent nano dots with which the possibilities of the drug delivery to a targeted site and its biomedical imaging can be explored. This review is mainly focused on the different process of synthesis of QDs, their application especially in the areas of malignancies and as a theranostic tool. The attempt is to consolidate the data available for the use of QDs in the biomedical applications.  相似文献   

19.
Chemical modification of the surface of CdSe/ZnS quantum dots (QDs) with small molecules or functional ligands often alters the characteristics of these particles. For instance, dopamine conjugation quenches the fluorescence of the QDs, which is a property that can be exploited for sensing applications if the conjugates are taken up into living cells. However, different sizes and/or preparations of mercaptocarboxylic acid solubilized QDs show very different properties when incubated with cells. It is unknown what physical parameters determine a QDs ability to interact with a cell surface, be endocytosed, escape from endosomes, and/or enter the nucleus. In this study, we examine the surface chemistry of QD-dopamine conjugates and present an optimized method for tracking the attachment of small biomolecules to the surface. It is found that the fluorescence intensity, surface charge, colloidal stability, and biological interactions of the QDs vary as a function of the density of dopamine on the surface. Successful targeting of QD-dopamine to dopamine receptor positive PC12 cells correlates with greater homogeneity of particle thiol layer, and a minimum number of ligands required for specific association can be estimated. These results will enable users to develop methods for screening QD conjugates for biological activity before proceeding to experiments with cell lines and animals.  相似文献   

20.
Affinity chromatography of adenosine deaminase (EC 3.5.4.4.) on agarose-bound inosine with biospecific elution of the enzyme using linear gradients of adenosine or inosine leads via chromatographic parameters to a dissociation constant of the binary complex of Kdiss = 3.5 × 10?3m and to a binding enthalpy of ΔH = ?3.9 kcal mol?1. These values can be explained by formation of two hydrogen bonds between immobilized inosine and the enzyme. The measurement of height equivalents of theoretical plates of the affinity column with dependence on the flow rate leads to the assumption that the velocity with which the equilibrium is reached is high compared with the flow rate; the high specificity of the affinity resin is not first of all due to a high number of theoretical plates but to the selectivity of the heterogenous enzymic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号