首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Lee HJ  Kang MJ  Lee EY  Cho SY  Kim H  Paik YK 《Proteomics》2008,8(16):3371-3381
A peptide-based 2-D liquid phase fractionation (PF2D) system was used in a quantitative proteomic analysis of hepatocellular carcinoma. 2-D liquid maps of peptide specimens showed better resolution than those of proteins, leading to the identification of differentially expressed proteins. Peptide-based PF2D gave well-matched theoretical and experimental pI values and was proven to be a very efficient and versatile analytical tool for both large-scale profiling and quantification of phosphoproteins in disease biomarker discovery.  相似文献   

2.
A form of cytochrome P-450 (P-450PB) with a molecular weight of 53.5-54.0 kD possessing a high benzphetamine-N-demethylase activity (100-120 nmol formaldehyde/min/nmol cytochrome) was isolated from liver microsomes of phenobarbital-induced C57Bl/6 mice. This cytochrome P-450 form is immunologically identical to its rat liver counterpart-P-450b (Mr = 52 kD) which is also characterized by a high rate of benzphetamine-N-demethylation. It was shown that 1.4-bis[2-(3.5-dichloropyridyloxy])benzene (TCPOBOP) induces in mouse liver the synthesis of the monoxygenase form whose substrate specificity and immunologic properties are identical to those of cytochromes P-450PB and P-450b. The immunochemically quantitated content of this form makes up to 20% of the total P-450 pool in liver microsomes of phenobarbital- or TCPOBOP-induced mice. Immunochemical analysis of microsomes with the use of antibodies to cytochromes P-450PB and P-450b revealed the presence on the electrophoregrams of phenobarbital-induced rat liver microsomes of two immunologically identical forms of cytochrome P-450, i.e., P-450b and P-450e (the latter had a low ability to benzphetamine N-demethylation). Liver microsomes of phenobarbital- or TCPOBP-induced mice gave only one precipitation band corresponding to cytochrome P-450PB.  相似文献   

3.
A cytochrome P450 called PBD-1 isolated from liver microsomes of an adult male Beagle dog treated with phenobarbital (PB) is structurally and functionally similar to members of the P450IIIA gene subfamily in rat and human liver microsomes. The sequence of the first 28 amino-terminal residues of PBD-1 is identical in 15 and 20 positions, respectively, to the P450IIIA forms P450p from rat and P450NF (and HLp) from human. Upon immunoblot analysis, anti-PBD-1 IgG recognizes PCNa (P450p) and PCNb (PB/PCN-E) from rat, P450NF from human, and two proteins in liver microsomes from both untreated and PB-treated dogs. Similarly, anti-PCNb IgG cross-reacts with PBD-1 and with at least one protein in microsomes from untreated dogs and two proteins in microsomes from PB-treated dogs. P450IIIA-form marker steroid 6 beta-hydroxylase activities increase 2.5-fold upon PB-treatment of dogs and are selectively inhibited by anti-PBD-1 IgG. NADPH-dependent triacetyloleandomycin (TAO) complex formation and erythromycin demethylase, also marker activities for P450IIIA forms from rats and humans, increase 4- and 5-fold in dog liver microsomes upon PB treatment, whereas immunochemically reactive PBD-1 is induced 3-fold. In microsomes from PB-treated dogs, 5 mg anti-PBD-1 IgG/nmol P450 inhibits greater than 75 and 50% of TAO complex formation and erythromycin demethylase activity, respectively. TAO complex formation is not inhibited by chloramphenicol, a selective inhibitor of the major PB-inducible dog liver cytochrome P450, PBD-2. These data suggest that PBD-1 or another immunochemically related form is responsible for a major portion of macrolide antibiotic metabolism by microsomes from PB-treated dogs and for steroid 6 beta-hydroxylation by microsomes from both untreated and PB-treated dogs. Major species differences were noted, however, in the apparent Km for 6 beta-hydroxylation of androstenedione by liver microsomes from untreated rats (24 microM), humans (380 microM), and untreated dogs (4700 microM).  相似文献   

4.
A solid-phase membrane mimetic system, denoted as immobilized artificial membranes (IAM), has been developed and utilized as a novel high-performance liquid chromatography (HPLC) matrix for the first step in the rapid purification of functional membrane proteins. IAM phases consist of monolayers of amphiphilic membrane lipid molecules covalently bonded to a rigid silica particle. These monolayers of lipids have proved remarkably effective for the chromatography of biomolecules. Several cytochrome P450 isozymes, an extremely important family of hydrophobic membrane proteins with a labile heme catalytic center, have been partially purified in functional conformations from rat liver, kidney, and adrenal microsomes on IAM supports. Functionality of purified P450 and P450 reductase has been demonstrated by optical difference spectroscopy, by carbon monoxide binding, and by reconstitution of enzymatic activity in vitro. Other membrane proteins, including rat liver plasma membrane NADH oxidase and ferricyanide oxidoreductase have also been partially purified by IAM HPLC. The methods for purification of these proteins are described.  相似文献   

5.
We have investigated the degradation in rat liver of two typical endoplasmic reticulum (ER) membrane proteins, phenobarbital (PB)-inducible cytochrome P-450 (P-450[PB]) and NADPH-cytochrome P-450 reductase (FP2). Autolysosomes, almost completely free from contamination by the other organelles such as ER, were prepared from leupeptin-treated rat livers according to the method of Furuno et al. (Furuno, K., T. Ishikawa, and K. Kato, 1982, J. Biochem., 91:1943-1950). Quantitative immunoblot analysis showed that these two proteins were found in large amounts in the autolysosomes regardless of PB treatment. The specific content of P-450 (PB) in the autolysosomes changed along with that in the microsomes during and after PB treatment, whereas hardly any P-450(PB) was detected in the cytosol fraction throughout the experiment. We also found a marked increase in the autolysosomal proteins 3 d after cessation of PB treatment when microsomal proteins are degraded most rapidly. Ferritin immunoelectron microscopy revealed directly that when the limiting membranes of the premature autolysosomes were partially broken the smooth vesicles segregated within the autolysosomes were heavily stained with ferritin anti-P-450(PB) conjugates. Thus, for the first time, we could present convincing evidence that P-450(PB) and FP2 are segregated to be degraded in the autolysosomes.  相似文献   

6.
A high-resolution screening platform, coupling online affinity detection for mammalian cytochrome P450s (Cyt P450s) to gradient reversed-phase high-performance liquid chromatography (HPLC), is described. To this end, the online Cyt P450 enzyme affinity detection (EAD) system was optimized for enzyme (beta-NF-induced rat liver microsomes), probe substrate (ethoxyresorufine), and organic modifier (methanol or acetonitrile). The optimized Cyt P450 EAD system has first been evaluated in a flow injection analysis (FIA) mode with 7 known ligands of Cyt P450 1A1/1A2 (alpha-naphthoflavone, beta-naphthoflavone, ellipticine, 9-hydroxy-ellipticine, fluvoxamine, caffein, and phenacetin). Subsequently, IC50 values were online in FIA-mode determined and compared with those obtained with standardmicrosomal assay conditions. The IC50 values obtained with the online Cyt P450 EAD system agreed well with the IC50 values obtained in the standard assays. For high affinity ligands of Cyt P450 1A1/1A2, detection limits of 1 to 3 pmol injected (n=3; signal to noise [S/N]=3) were obtained. The individual inhibitory properties of ligands in mixtures of the ligands were subsequently investigated using an optimized Cyt P450 EAD system online coupled to gradient HPLC. Using the integrated online gradient HPLC Cyt P450 EAD platform, detection limits of 10 to 25 pmol injected (n=1; S/N=3) were obtained for high-affinity ligands. It is concluded that this novel screening technology offers new perspectives for rapid and sensitive screening of individual compounds in mixtures exhibiting affinity for liver microsomal Cyt P450s.  相似文献   

7.
Shin YK  Lee HJ  Lee JS  Paik YK 《Proteomics》2006,6(4):1143-1150
To develop a standard method for separating highly basic proteins in mammalian cells, we established a 2-D LC separation system coupled with chromatofocusing/nonporous RP column chromatography (CF/NPRPC) in a ProteomeLab PF2D system. After standardizing conditions for 2-D LC, a 2-D liquid protein map of uninfected macrophage proteins with pH range 8.3-11.3 was constructed, and then compared with a macrophage protein map made after infection with Candida albicans. The results demonstrate that 2-D LC offers both high resolution and reproducibility for separation of highly basic, macrophage proteins. After protein identification using a nano 2-D LC-MS/MS Proteomics Solution System, quantitative determination of the changes in the differentially expressed proteins (e.g., galectin-3) in C. albicans-infected macrophages was also accomplished by measuring the peak area of the chromatogram in 2-D LC. The result from this measurement of galectin-3 expression shows a 3.41-fold decrease in the infected macrophage cells, which was further confirmed by that from the RT-PCR of mRNA of galectin-3. Thus, 2-D LC coupled with CF/NPRPC could be applicable to common analysis of highly basic proteins in a high-throughput manner.  相似文献   

8.
The major phenobarbital-inducible form of cytochrome P-450 (cytochrome P-450 PB) was purified to homogeneity from rat liver microsomes and rabbit antibodies prepared against the purified enzyme. Using these antibodies, an enzyme-linked immunosorbent assay (ELISA) was developed for the detection of cytochrome P-450 PB in microsomes which was sensitive at the nanogram level. The content of cytochrome P-450 PB was determined in hepatic microsomes from rats treated with various xenobiotics. Phenobarbital and Aroclor 1254 pretreatments resulted in several-fold increases in immunoreactive cytochrome P-450 PB over control levels. ELISA measurements of cytochrome P-450 PB were also carried out over a 48-h time course of phenobarbital induction in liver microsomes. Significant increases over control levels were seen at 16 h and beyond. Measurements of ELISA-detectable cytochrome P-450 PB were made in microsomes following the administration of CCl4 to phenobarbital-pretreated rats. Immunoreactive cytochrome P-450 PB was observed to decrease less rapidly than the spectrally detectable enzyme in the microsomal membranes. Inhibition of heme synthesis was carried out by the administration of 3-amino-1,2,4-triazole (AT) to rats. Concomitant pretreatment with phenobarbital and AT resulted in levels of ELISA-detectable cytochrome P-450 PB which were significantly increased over control levels, while spectrally detectable levels of total holoenzyme remained unchanged. These results support the idea that this cytochrome P-450 may exist, at least partly, in the microsomal membrane in an inactive or apoprotein form.  相似文献   

9.
Reactive oxygen species (ROS) and oxidative stress have been considered in a variety of disease models, and cytochrome P450 (P450) enzymes have been suggested to be a source of ROS. Induction of P450s by phenobarbital (PB), beta-naphthoflavone (betaNF), or clofibrate in a mouse model increased ROS parameters in the isolated liver microsomes, but isoniazid treatment did not. However, when F(2)-isoprostanes (F(2)-IsoPs) were measured in tissues and urine, PB showed the strongest effect and betaNF had a measurable but weaker effect. The same trend was seen when an Nfr2-based transgene reporter sensitive to ROS was analyzed in the mice. This pattern had been seen earlier with F(2)-IsoPs both in vitro and in vivo with rats (Dostalek, M., Brooks, J. D., Hardy, K. D., Milne, G. L., Moore, M. M., Sharma, S., Morrow, J. D., and Guengerich, F. P. (2007) Mol. Pharmacol. 72, 1419-1424). One possibility for the general in vitro-in vivo discrepancy in oxidative stress found in both mice and rats is that PB treatment might attenuate protective systems. One potential candidate suggested by an mRNA microarray was nicotinamide N-methyltransferase. PB was found to elevate nicotinamide N-methyltransferase activity 3- to 4-fold in mice and rats and to attenuate levels of NAD(+), NADP(+), NADH, and NADPH in both species (20-40%), due to the enhanced excretion of (N-methyl)nicotinamide. PB also down-regulated glutathione peroxidase and glutathione reductase, which together constitute a key enzymatic system that uses NADPH in protecting against oxidative stress. These multiple effects on the protective systems are proposed to be more important than P450 induction in oxidative stress and emphasize the importance of studying in vivo models.  相似文献   

10.
We carried out this experiment to evaluate the relationship between isoforms of cytochrome P450 (P450) and liver injury in lipopolysaccharide (LPS)-induced endotoxemic rats. Male rats were intraperitoneally administered phenobarbital (PB), a P450 inducer, for 3 days, and 1 day later, they were intravenously given LPS. PB significantly increased P450 levels (200% of control levels) and the activities (300-400% of control) of the specific isoforms (CYP), CYP3A2 and CYP2B1, in male rats. Plasma AST and ALT increased slightly more in PB-treated rats than in PB-nontreated (control) rats with LPS treatment. Furthermore, either troleandomycin or ketoconazole, specific CYP3A inhibitors, significantly inhibited LPS-induced liver injury in control and PB-treated male rats. To evaluate the oxidative stress in LPS-treated rats, in situ superoxide radical detection using dihydroethidium (DHE), hydroxy-2-nonenal (HNE)-modified proteins in liver microsomes and 8-hydroxydeoxyguanosine (8-OHdG) in liver nuclei were measured in control and PB-treated rats. DHE signal intensity, levels of HNE-modified proteins, and 8-OHdG increased significantly in PB-treated rats. LPS further increased DHE intensity, HNE-modified proteins, and 8-OHdG levels in normal and PB-treated groups. CYP3A inhibitors also inhibited the increases in these items. Our results indicate that the induction or preservation of CYP isoforms further promotes LPS-induced liver injury through mechanisms related to oxidative stress. In particular, CYP3A2 of P450 isoforms made an important contribution to this LPS-induced liver injury.  相似文献   

11.
The absence of antibodies to cholesterol 7 alpha-hydroxylase (EC 1.14.13.17), the rate-determining enzyme for bile acid synthesis, has significantly compromised studies on this protein. Nine antibodies raised against proteins from the cytochrome P-450 gene families (P450I, P450IIA, P450IIB, P450IIC and P450III) were tested as inhibitors of 7 alpha-hydroxylase activity. An antibody raised against a male-predominant P-450 (PB2a, P450h) from the P450IIC gene subfamily was an effective inhibitor of activity in liver microsomal fractions from rat, mouse and hamster. The inhibition could be reversed by the addition of PB2a antigen, indicating structural similarity between cholesterol 7 alpha-hydroxylase and proteins within the P450IIC subfamily. Western blot analysis of hepatic microsomal fractions with the PB2a antibody gave three bands, two of which, like cholesterol 7 alpha-hydroxylase, did not inhibit sexual dimorphism. The intensity of one of the bands (apparent Mr 54,000) correlated with changes observed in activity due to diet [Spearman correlation of 0.800 (P less than 0.01)]. These findings suggest that cholesterol 7 alpha-hydroxylase is a form of P-450 which shares structural similarity with cytochromes P-450 in the P450IIC gene subfamily and that its feedback regulation by bile acid involves protein induction rather than simply post-translational modification.  相似文献   

12.
Metabolism of 3H-labeled (+)-(S,S)- and (-)-(R,R)-1,2-dihydrodiols of triphenylene by rat liver microsomes and 11 purified isozymes of cytochrome P450 in a reconstituted monooxygenase system has been examined. Although both enantiomers were metabolized at comparable rates, the distribution of metabolites between phenolic dihydrodiols and bay-region, 1,2-diol 3,4-epoxide diastereomers varied substantially with the different systems. Treatment of rats with phenobarbital (PB) or 3-methylcholanthrene (MC) caused a slight reduction or less than a twofold increase, respectively, in the rate of total metabolism (per nanomole of cytochrome P450) of the enantiomeric dihydrodiols compared to microsomes from control rats. Among the 11 isozymes of cytochrome P450 tested, only cytochromes P450c (P450IA1) and P450d (P450IA2) had significant catalytic activity. With either enantiomer of triphenylene 1,2-dihydrodiol, both purified cytochrome P450c (P450IA1) and liver microsomes from MC-treated rats formed diol epoxides and phenolic dihydrodiols in approximately equal amounts. Purifed cytochrome P450d (P450IA2), however, formed bay-region diol epoxides and phenolic dihydrodiols in an 80:20 ratio. Interestingly, liver microsomes from control or PB-treated rats produced only diol epoxides and little or no phenolic dihydrodiols. The diol epoxide diastereomers differ in that the epoxide oxygen is either cis (diol epoxide-1) or trans (diol epoxide-2) to the benzylic 1-hydroxyl group. With either purified cytochromes P450 (isozymes c or d) or liver microsomes from MC-treated rats, diol epoxide-2 is favored over diol epoxide-1 by at least 4:1 when the (-)-enantiomer is the substrate, while diol epoxide-1 is favored by at least 5:1 when the (+)- enantiomer is the substrate. In contrast, with liver microsomes from control or PB-treated rats, formation of diol epoxide-1 relative to diol epoxide-2 was favored by at least 2:1 regardless of the substrate enantiomer metabolized. This is the first instance where the ratio of diol epoxide-1/diol epoxide-2 metabolites is independent of the dihydrodiol enantiomer metabolized. Experiments with antibodies indicate that a large percentage of the metabolism by microsomes from control and PB-treated rats is catalyzed by cytochrome P450p (P450IIIA1), resulting in the altered stereoselectivity of these microsomes compared to that of the liver microsomes from MC-treated rats.  相似文献   

13.
Three novel cytochrome P450 isozymes were purified from phenobarbital (PB)-treated D2 mouse liver microsomes and compared to the previously characterized coumarin 7-hydroxylase, P450Coh. The molecular masses were 56.5, 55, 51, and 49.5 kDa, and the peaks of the reduced CO complexes were at 450, 447.5, 451.5, and 449 nm for P450PBI, P450PBII, P450PBIII, and P450Coh, respectively. The NH2-terminal sequences suggest that these isozymes belong to the P450 gene subfamilies 2B, 1A, 2C, and 2A, respectively. On the basis of reconstituted activities and microsomal immunoinhibition studies, P450Coh was the sole catalyst of coumarin 7-hydroxylation. P450PBI was the major isozyme catalyzing the high Km 7-pentoxyresorufin O-dealkylation. This reaction was also mediated at a slower rate by the low Km isozyme, P450PBII. P450PBIII contributed significantly to the microsomal O-deethylation of 7-ethoxyresorufin and N-demethylation of benzphetamine. Western blotting and dot immunobinding analyse of microsomes showed that the induction patterns of the isozymes were different. PB and TCPO-BOP induced all isozymes variably: P450PBI (19- and 31-fold), P450PBII (2- and 3-fold), P450PBIII (9- and 4-fold), and P450Coh (about 2-fold). Pyrazole induced only P450Coh, while all other isozymes were decreased by 30 to 60%. The changes in the microsomal amounts of these isozymes correlated generally well with the variation in the immunoinhibitable enzyme activities. On the basis of the structural and catalytic properties, immunochemical characteristics, and induction profiles, all three isozymes were different from each other and from the previously characterized P450Coh. This mouse PB-inducible P450 model may be valuable in further studies on the induction mechanisms of PB and TCPOBOP.  相似文献   

14.
A series of fourteen cytochrome P-450 isoenzymes was treated with three different protein kinases and found to divide into isoenzymes phosphorylated by both the cyclic AMP-dependent kinase and the calcium-phospholipid-dependent kinase (P-450 PB 3a and PB 2e), by none of these kinases (P-450 PB 1b, MC 1b, UT 1, and thromboxane synthase), and by either the cyclic AMP-dependent kinase (P-450 LM 2, PB 2d, and PB 3b) or the calcium-phospholipid-dependent kinase (P-450 PB 1a, PB 2a, MC 1a, LM 3c, and LM 4). Other components of the monooxygenase system, cytochrome P-450 reductase, cytochrome b5, cytochrome b5 reductase as well as microsomal epoxide hydrolase, were poor substrates for the kinases employed. On the other hand, glutathione transferases 1-2 and 4-4, but not 3-3, were relatively good substrates for the calcium-phospholipid-dependent kinase.  相似文献   

15.
Two major forms of liver microsomal cytochrome P 450, one from untreated rats (P 450 A2NI) and the other from phenobarbital-treated rats (P 450 B2PB), were partially purified. Reconstitution of monooxygenase activities of purified enzymes and inhibition patterns of these activities by antibodies in microsomes gave the following results: 1) aniline hydroxylase activity is mainly supported by cytochrome P 450 A2NI. This form is the major one in microsomes from control rats, but is also found at minute amounts in microsomes from phenobarbital-treated rats. It behaves as a constitutive form. 2) 4-nitroanisole-and benzphetamine-demethylase activities are mainly supported by cytochrome P 450 B2PB which is predominant in phenobarbital-treated rats but is also present in control microsomes at low levels. 3) 4-nitroanisole-O-demethylase activity is less specific than benzphetamine-N-demethylase activity towards cytochrome P 450 B2PB.  相似文献   

16.
Proteomic approaches have been used for detection and identification of cytochromes P450 forms from highly purified membrane preparations of human liver. These included the protein separation by 2D-and/or 1D-electrophoresis and molecular scanning of a SDS-PAGE gel fragment in a range 45–66 kDa (this area corresponds molecular weights of cytochromes P450). The analysis of protein content was statistically evaluated by means of an original 1D-ZOOMER software package which allowed to carry out the processing of mass spectra mixture instead of individual mass spectra used by standard techniques. In the range 45–66 kDa we identified 13 microsomal membrane proteins including such cytochrome P450 forms as CYPs 1A2, 1B1, 2A6, 2E1, 2C8, 2C9, 2C10, 2D6, 3A4, 4A11, 4F2. Study of enzymatic activities of human liver microsomal cytochrome P450 isoforms CYP 1A, 2B, 3A, and 2E revealed the decrease in the rates of O-dealkylation and N-demethylation catalyzed by CYP 450 1A1/1A2 and 3A4 under pathological conditions, whereas 7-benzyloxyresorufin-O-debenzylase activity (which characterizes the total activity of CYP 2B and CYP 2C), the activities of CYP 2E1 (methanol oxidation), 7-pentoxyresorufin-O-dealkylation (CYP 2B), 7-ethoxy-and 7-methoxycoumarin-O-dealkylases (CYP 2B1) remained basically unchanged.  相似文献   

17.
The kinetic parameters of NADPH-dependent cytochrome P450 LM2 (2B4) reduction and substrate oxidation in the monomeric reconstituted system, consisting of purified NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers, and in phenobarbital-induced rabbit liver microsomes were compared. In the absence of benzphetamine, NADPH-dependent reduction of cytochrome P450 LM2 was monophasic in the monomeric reconstituted system and biphasic in the microsomes. The presence of the substrate in the monomeric reconstituted system caused the appearance of the fast phase. In this system substrate-free cytochrome P450 LM2 was entirely low-spin, and the addition of benzphetamine shifted the spin equilibrium to a high state very weakly. No correlation between high-spin content and the proportion of the fast phase of NADPH-dependent LM2 reduction was found in the system. Vmax values for the oxidation of type I substrates (benzphetamine, dimethylaniline, aminopyrine) in the monomeric reconstituted system were higher or the same as in the microsomes, whereas Km values for the substrates and NADPH were lower in the microsomes. Maximal activity of the monomeric reconstituted system was observed at a 1:1 NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio. Measurements of benzphetamine oxidation as a function of NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio at a constant total protein concentration allowed the Kd of the NADPH-cytochrome P450 reductase/cytochrome P450 LM2 complex to be estimated as 6.4 +/- 0.5 microM. Complex formation between the NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers was not detected by recording the difference binding spectra of the reductase monomers with LM2 monomers or by treatment the mixture of the monomers of the proteins with the crosslinking reagent, water-soluble carbodiimide.  相似文献   

18.
Cytochrome P-450 (P450) NF, a member of the P450 IIIA subfamily, is the major contributor to the oxidation of the calcium-channel blocker nifedipine in human liver microsomes. A cDNA clone designated NF25 encoding for human P450 NF was isolated from a bacteriophage lambda gt11 expression library [Beaune, P. H., Umbenhauer, D. R., Bork, R. W., Lloyd, R. S. & Guengerich, F. P. (1986) Proc. Natl Acad. Sci. USA 83, 8064-8068]. We have expressed NF25 cDNA in Saccharomyces cerevisiae using an expression vector constructed from pYeDP1/8-2 [Cullin, C. & Pompon, D. (1988) Gene 65, 203-217]. Yeast transformed with the plasmid containing the NF25 sequence (pVNF25) showed a ferrous-CO spectrum typical of cytochrome P-450. Microsomal preparations contained a protein with an apparent molecular mass identical to that of P450-5 (a form isolated from human liver indistinguishable from P450 NF) that was not present in microsomes from control yeast (transformed with pYeDP1/8-2 alone), as revealed by immunoblotting with anti-P450-5 antibodies. On the other hand, antibodies raised in rabbits against human liver P450 IIC8-10 and rat liver P450 IA1 and P450 IIE1 did not recognize yeast-expressed P450 NF25. The P450 NF25 content in microsomes was about 90 pmol/mg protein. Microsomal, yeast-expressed P450 NF25 exhibited a high affinity for different substrates including macrolide antibiotics, dihydroergotamine and miconazole as shown by difference visible spectroscopy. Microsomal suspensions containing P450 NF25 were also able to catalyze several oxidation reactions that were expected from the activities of the protein isolated from human liver, including nifedipine 1,4-oxidation, quinidine 3-hydroxylation and N-oxygenation, and N-demethylation of the macrolide antibiotics erythromycin and troleandomycin. The yeast endogenous NADPH-cytochrome P-450 reductase thus couples efficiently with the heterologous P450 NF25 though its level is far lower than that of its ortholog in human liver. Indeed addition of rabbit liver NADPH-cytochrome P-450 reductase increased the oxidation rates. Rabbit liver cytochrome b5 also caused a marked enhancement of catalytic activities, as had been noted previously for this particular P450 enzyme in a reconstituted system involving the protein purified from human liver. Furthermore, the level of the yeast endogenous cytochrome P-450 (lanosterol 14-demethylase) has been found to be negligible compared to the heterologously expressed cytochrome P-450 (30 times less). Thus, yeast microsomes containing P450 NF25 constitute by themselves a good functional model for studying the binding capacities and catalytic activities of this individual form of human hepatic cytochrome P-450.  相似文献   

19.
The purpose of this study was to purify and characterize the forms of cytochrome P-450 induced in chicken liver by acetone or ethanol. Using high performance liquid ion-exchange chromatography, we were able to isolate at least four different forms of cytochrome P-450 which were induced by acetone in chicken liver. All four forms of cytochrome P-450 proved to be distinct proteins, as indicated by their N-terminal amino acid sequences and their reconstituted catalytic activities. Two of these forms, also induced by glutethimide in chicken embryo liver, appeared to be cytochromes P450IIH1 and P450IIH2. Both of these cytochromes P-450 have identical catalytic activities towards benzphetamine demethylation. However, they differ in their abilities to hydroxylate p-nitrophenol and to convert acetaminophen into a metabolite that forms a covalent adduct with glutathione at the 3-position. Another form of cytochrome P-450 induced by acetone is highly active in the hydroxylation of p-nitrophenol and in the conversion of acetaminophen to a reactive metabolite, similar to reactions catalysed by mammalian cytochrome P450IIE. Yet the N-terminal amino acid sequence of this form has only 30-33% similarity with cytochrome P450IIE purified from rat, rabbit and human livers. A fourth form of cytochrome P-450 was identified whose N-terminal amino acid sequence and enzymic activities do not correspond to any mammalian cytochromes P-450 reported to be induced by acetone or ethanol.  相似文献   

20.
We examined whether induction of the phenobarbital (PB)-inducible form of cytochrome P450 (P450IIB) in rat hepatocytes could be analyzed quantitatively by immunogold electron microscopy. Rats received intraperitoneal injections of PB every 24 hr and livers at the various stages of PB induction were fixed by perfusion with a mixture of paraformaldehyde (4%) and glutaraldehyde (0.1%) and embedded in LR White. Ultra-thin sections were cut and labeled by the protein A-gold procedure using affinity-purified anti-P450IIB antibody which was previously immunoabsorbed with liver microsomes from a control rat (not treated with PB). We counted the number of gold particles per micron of the rough ER membranes (particle density). Before PB treatment, the particle density of the rough ER in rat hepatocytes was practically zero and increased markedly at 48 and 72 hr after PB treatment. The rough microsomes were prepared from these PB-treated rat livers. The amount of P450IIB was estimated by immunoblot analysis and the number of gold particles bound to the rough microsomal membrane was determined by the same post-embedding immunogold procedure. The particle density of the rough microsomes increased in parallel with the increase in the amount of P450IIB, indicating good correlation of the two variables. Thus, the induction of cytochrome P450IIB can be quantitatively and reliably investigated by immunogold electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号